

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE Escuela de Ingeniería

VALIDACIÓN DEL ANÁLISIS ESTÁTICO NO LINEAL DEL PROGRAMA SAP 2000

IGNACIO MARCELO FUENZALIDA HENRÍQUEZ

Informe de Actividad de Graduación para optar al Grado de Magíster en Ingeniería Estructural y Geotécnica

Profesor Supervisor: MATIAS HUBE GINESTAR

Santiago de Chile, Julio, 2014.

A mi familia por el apoyo y cariño incondicional que me han dado, a mi polola por entenderme y apoyarme en cada paso de este camino y a mis amigos y compañeros de trabajo, por acompañarme durante esta etapa...

AGRADECIMIENTOS

Para la preparación de este trabajo quisiera agradecer al apoyo de mi familia, mis colegas, mis amigos, mis compañeros y mi polola. Sin embargo, nada de esto podría haber sido posible sin la guía constante y dedicada del profesor Matías Hube, así como de los consejos y ayuda del profesor Diego López-García. Sin ellos, este trabajo no podría haberse realizado de manera adecuada y agradezco su dedicación, el tiempo y la manera en que me ayudaron durante la realización de este trabajo. Cabe mencionar también a Elena Cornejo, coordinadora del Magister IEG, cuya ayuda fue invaluable a lo largo de toda la duración del programa.

Adicionalmente, quiero agradecer al proyecto Fondecyt #11121581 y al Centro Nacional de Investigación para la Gestión Integrada de Desastres Naturales CONICYT/FONDAP/15110017.

Gracias a todos.

INDICE GENERAL

Pág.

DED	DICATORIAii	
AGR	RADECIMIENTOSiii	
INDI	ICE DE TABLAS vi	
INDI	ICE DE FIGURAS vii	
RESU	UMENxi	
ABS	TRACT xii	
I.	INTRODUCCIÓN 1	
	I.1 Objetivos	
	I.2 Organización del trabajo2	
II	MARCO TEÓRICO	
	II.1 Solución de un Análisis Estático No-Lineal	
	II.2 Elemento Viga con Rótulas Plásticas	
	II.3 Solución del Pushover de una Estructura con Elementos Vigas con Rótu	las
	Plásticas	
III	DESCRIPCIÓN DE LA ESTRUCTURA	
IV	ANÁLISIS ESTÁTICO NO LINEAL CON SAP 2000	
	IV.1 Modelo estructural en SAP 2000	
	IV.2 Asignación de propiedades de las rótulas plásticas	
	IV.3 Asignación de rótulas plásticas a elementos viga en SAP 2000	
	IV.4 Resultados análisis estático no lineal con SAP 2000	
	IV.5 Comparación resultados SAP 2000 entre distintos tipos de rótulas 36	
V	Análisis estatico no lineal con Excel	
	V.1 Características y Funciones de la Planilla Excel Elaborada	
	V.2 Resultados Excel	
	V.3 Comparación de Resultados entre Excel y SAP 2000	

VI	CONCLUSIONES Y COMENTARIOS	58
VII	BIBLIOGRAFIA	60
VIII	A N E X O S	61
IX	Anexo A: EXCEL PARA RÓTULAS ELASTOPLÁSTICAS	62
Х	Anexo B: EXCEL PARA RÓTULAS CON ENDURECIMIENTO DE 5%	76

INDICE DE TABLAS

	Pág.
Tabla IV-1. Tabla resultados SAP 2000	33
Tabla V-1. Tabla resultados pushover obtenidos con Excel.	53
Tabla V-2. Comparación del desplazamiento de techo entre Excel y SAP 2000, rótu	las
elasto-plásticas	56
Tabla V-3. Comparación del desplazamiento de techo entre Excel y SAP 2000, rótu	las con
endurecimiento.	57

INDICE DE FIGURAS

Pág.
Figura II-1. Representación gráfica de la estrategia de solución Pushover (Hube, 2013) 5
Figura II-2. Representación gráfica del método de Newton-Raphson, para la solución del
Pushover (Adaptado de Hube, 2013)
Figura II-3. Modelo utilizado para la viga. a) Viga no deformada. b) Viga deformada 10
Figura II-4. Giros elásticos y plásticos de las rótulas plásticas
Figura II-5. Grados de libertad asociados a la viga11
Figura II-6. Curva constitutiva del resorte rígido-plástico
Figura II-7. Diagrama de flujo de la solución del pushover de la estructura con rótulas
plásticas en las vigas 17
Figura III-1. Dimensiones de la estructura analizada19
Figura III-2. Grados de libertad de la estructura analizada
Figura III-3. Diagrama de momento flector (kN-m) para carga lateral de 10 (kN) 21
Figura III-4. Deformada de la estructura para carga lateral de 10 (kN) 21
Figura IV-1. Modelo SAP 2000 del marco analizado
Figura IV-2. Carga lateral de 10 kN, asociada al estado de carga P _{ref}
Figura IV-3. Opciones del análisis estático no lineal en SAP 2000
Figura IV-4. Estados de la estructura guardados del análisis estático no lineal
Figura IV-5. Comando (menú) para definir las propiedades de las rótulas
Figura IV-6. Definición del tipo de rótula, <i>Deformation Controlled Hinge</i>
Figura IV-7. Definición de propiedades de rótula, Deformation Controlled Hinge
Figura IV-8. Tipos de curvas de comportamiento no lineal, FEMA 356 31
Figura IV-9. Menú para asignar las rótulas a elementos <i>frame</i>
Figura IV-10. Asignación de tipo de rótula y posición relativa al elemento
Figura IV-11. Curva fuerza aplicada v/s desplazamiento de techo, rótulas elasto-plásticas.
Figura IV-12. Curva fuerza aplicada v/s desplazamiento de techo, rótulas con
endurecimiento 5%
Figura IV-13. Comparación de curvas fuerza aplicada v/s desplazamiento de techo 36

Figura V-1. Propiedades geométricas y constitutivas elementos viga
Figura V-2. Matrices de rigidez y flexibilidad y matriz de colocación
Figura V-3. Desplazamientos y giros de los grados de libertad considerados
Figura V-4. Residual de desplazamientos e inicialización de parámetros, ciclo iterativo
viga no lineal
Figura V-5. Diferencial de momentos y momentos sobre los elementos no lineales en la
viga
Figura V-6. Giros de los extremos de la viga y matriz de flexibilidad plástica
Figura V-7. Matriz de flexibilidad matriz de rigidez y vector de giros residuales de la viga.
Figura V-8. Matriz de rigidez tangente de la estructura, momentos en los extremos y giros
plásticos
Figura V-9. Fuerzas resistentes de los elementos y fuerza resistente global
Figura V-10. Residual de fuerzas asociados al paso del pushover
Figura V-11. Residual de fuerzas mayor a tolerancia y delta de desplazamientos
Figura V-12. Desplazamientos asociados a la segunda iteración para el paso λ =945
Figura V-13. Residual de desplazamientos y matriz de flexibilidad elástica
Figura V-14. Marcador m y momentos en los extremos de la viga
Figura V-15. Matriz de flexibilidad plástica de la viga 46
Figura V-16. Residual de desplazamientos y norma del residual de desplazamientos 47
Figura V-17. Asignación del nuevo vector residual de desplazamientos
Figura V-18. Estimación de momentos en los extremos de la viga (primera iteración) 48
Figura V-19. Estimación de momentos en los extremos de la viga (segunda iteración) 48
Figura V-20. Iteración final de la viga
Figura V-21. Actualización de la matriz de rigidez tangente de la estructura 50
Figura V-22. Calculo de las fuerzas resistentes de la estructura
Figura V-23. Calculo de la norma del residual de fuerzas y diferencial de desplazamientos.
Figura V-24. Iteración final de la estructura para el paso λ =9
Figura V-25. Curva fuerza aplicada v/s desplazamiento de techo, rótulas elasto-plásticas.52

Figura V-26. Curva fuerza aplicada v/s desplazamiento de techo, rótulas con
endurecimiento
Figura V-27. Curva fuerza aplicada v/s desplazamiento de techo, rótulas elasto-plásticas.55
Figura V-28. Curva fuerza aplicada v/s desplazamiento de techo, rótulas con
endurecimiento
Figura IX-1. Propiedades estructura, rótulas elastoplásticas
Figura IX-2. Resultados para $\lambda=1$, primera iteración, rótulas elastoplásticas
Figura IX-3. Resultados para λ =1, segunda iteración, rótulas elastoplásticas
Figura IX-4. Resultados para $\lambda=2$, primera iteración, rótulas elastoplásticas
Figura IX-5. Resultados para λ =2, segunda iteración, rótulas elastoplásticas
Figura IX-6. Resultados para λ =3, primera iteración, rótulas elastoplásticas
Figura IX-7. Resultados para λ =3, segunda iteración, rótulas elastoplásticas65
Figura IX-8. Resultados para λ =4, primera iteración, rótulas elastoplásticas
Figura IX-9. Resultados para λ =4, segunda iteración, rótulas elastoplásticas
Figura IX-10. Resultados para λ =5, primera iteración, rótulas elastoplásticas
Figura IX-11. Resultados para λ =5, segunda iteración, rótulas elastoplásticas67
Figura IX-12. Resultados para λ =6, primera iteración, rótulas elastoplásticas
Figura IX-13. Resultados para λ =6, segunda iteración, rótulas elastoplásticas
Figura IX-14. Resultados para λ =7, primera iteración, rótulas elastoplásticas
Figura IX-15. Resultados para λ =7, segunda iteración, rótulas elastoplásticas
Figura IX-16. Resultados para λ =8, primera iteración, rótulas elastoplásticas
Figura IX-17. Resultados para λ =8, segunda iteración, rótulas elastoplásticas70
Figura IX-18. Resultados para λ =9, primera iteración, rótulas elastoplásticas
Figura IX-19. Resultados para λ =9, segunda iteración, rótulas elastoplásticas71
Figura IX-20. Resultados para λ =9, tercera iteración, rótulas elastoplásticas
Figura IX-21. Resultados para λ =10, primera iteración, rótulas elastoplásticas
Figura IX-22. Resultados para λ =10, segunda iteración, rótulas elastoplásticas
Figura IX-23. Resultados para λ =10, tercera iteración, rótulas elastoplásticas

RESUMEN

El presente trabajo tiene como objetivo validar el análisis estático no lineal del programa SAP 2000 Para realizar esta validación, se implementó la solución del pushover en el programa Excel. Para la validación eligió una estructura de un piso y un vano con rótulas plásticas en los extremos de la viga. Se consideraron dos tipos de rótulas plásticas, perfectamente elasto-plásticas y con endurecimiento post-fluencia de 5%.

La solución del pushover requiere de dos iteraciones anidadas. Una de la estructura, y otra del elemento viga. Para el elemento viga se utilizó la formulación denominada *One Component Series Model*. Esta formulación, y la solución del pushover de la estructura se implementó en Excel y se estimaron los desplazamientos.

Los resultados obtenidos muestran que la formulación implementada replica los resultados de manera casi exacta a los de Excel para ambos tipos de rótulas elegidas. La diferencia del desplazamiento de techo entre Excel y SAP es 0% para el caso con rótulas perfectamente elasto-plásticas y 0.3% el caso con rótulas con endurecimiento De esta forma se logró el objetivo de comprobar el funcionamiento interno de SAP 2000 para el análisis estático no lineal y así dar claridad a esta característica del software que no se encuentra documentada adecuadamente.

ABSTRACT

This work aims to validate the nonlinear static analysis of SAP 2000 program. The pushover solution was implemented in the Excel program in order to perform this validation. A one-story and one bay structure with plastic hinges at the ends of the beam were chosen for this study. Two types of hinges were considered, perfect elasto-plastic and with post-yield hardening of 5% were considered.

The pushover solution requires two nested iterations, one belongs to the structure and the other to the beam element. The formulation called One Component Series Model was used for the beam element. This formulation and the pushover solution of the structure were implemented in Excel and the displacements were estimated.

The results show that the implemented formulation replicates almost exactly the results obtained in Excel for both types of hinges chosen. The roof displacement difference between Excel and SAP is 0% for the case with perfect elasto-plastic hinges and 0.3% for the case with hardening hinges. Thus, the aim of proving the inner functioning of SAP 2000 for nonlinear static analysis and clarifying this software characteristic that is not properly documented was achieved.

I. INTRODUCCIÓN

El análisis estático no lineal o Pushover, se utiliza cada vez con más frecuencia en las oficinas de ingeniería. El objetivo de este análisis es predecir el comportamiento no lineal de una estructura bajo un sismo de gran intensidad. Mediante este análisis se puede predecir la cantidad y ubicación de rótulas plásticas que se podrían generar durante un sismo de gran intensidad. Adicionalmente, este análisis permite identificar el mecanismo de colapso de una estructura.

La motivación de este estudio nace de la premisa de que los programas computacionales de análisis estructural son cada vez más eficientes y fáciles de ocupar. Sin embargo, no siempre está bien documentada la metodología utilizada por estos programas, y los ingenieros de la práctica profesional los utilizan sin cuestionar mucho su funcionamiento. Este es el caso del programa computacional SAP 2000 (CSI 2011), ampliamente utilizado en oficinas de ingeniería. Este programa no cuenta con la documentación necesaria para poder comprender completamente la metodología empleada para realizar un pushover (CSI 2009).

I.1 Objetivos

El objetivo de este estudio es validar el análisis estático no lineal del programa computacional SAP 2000. En este estudio, se valida específicamente el análisis estático no lineal de un marco plano modelado con elementos tipo viga con rótulas plásticas en sus extremos. Para validar los resultados de SAP2000, se realiza el análisis no lineal del mismo marco utilizando una planilla Excel. La validación se realiza para elementos tipo viga con

rótulas plásticas considerando dos tipos de no linealidad: (1) comportamiento elasto-plástico perfecto, y (2) comportamiento con endurecimiento post-fluencia de 5%.

I.2 Organización del trabajo

El capítulo II de este trabajo presenta el marco teórico asociado a la solución del análisis estático no lineal, mostrando las ecuaciones que gobiernan el comportamiento global de la estructura así como la no linealidad de un elemento tipo viga con rótulas plásticas a flexión en sus extremos. En el capítulo III muestra la estructura analizada y sus propiedades mecánicas. Esta estructura corresponde a un marco de un piso y un vano. En el capítulo IV se describe el análisis estático no lineal realizado en el programa computacional SAP 2000. El capítulo V muestra los resultados asociados al Pushover realizado en SAP 2000 y la comprobación con la planilla Excel. En el capítulo VI se presentan las conclusiones y comentarios obtenidos del presente estudio. Finalmente, en el Anexo, se muestra la verificación paso a paso, obtenido de las planillas Excel.

II MARCO TEÓRICO

Este capítulo describe el marco teórico asociado a la solución de un análisis estático no lineal. Se describen las ecuaciones que gobiernan el comportamiento y las condiciones asociadas para resolver el análisis estático no lineal en forma incremental. Adicionalmente, este capítulo describe la formulación de un elemento tipo viga con rótulas no lineales en sus extremos.

II.1 Solución de un Análisis Estático No-Lineal

El análisis estático no-lineal consiste en obtener los desplazamientos nodales de la estructura (u) dado un vector de fuerzas externas (P). Para resolver este problema, se utiliza la solución iterativa de Newton-Raphson, que considera la matriz tangente de la estructura. La ecuación general a resolver para dar solución al pushover (Hube, 2013 y Chopra, 2012) es:

$$\boldsymbol{P} = \boldsymbol{f}_{\boldsymbol{s}}(\boldsymbol{u}) \tag{2.1}$$

, donde $f_s(u)$ corresponden al vector de fuerzas resistentes.

Para encontrar el desplazamiento u que resuelve la ecuación anterior, se realiza una expansión en serie de Taylor en torno al desplazamiento $u^{(0)}$, correspondiente al desplazamiento conocido del incremento de carga anterior. La expansión en serie de Taylor del vector de fuerzas resistentes es:

$$\boldsymbol{f}_{s}(\boldsymbol{u}) \approx \boldsymbol{f}_{s}^{(0)} + \frac{\partial \boldsymbol{f}_{s}(\boldsymbol{u})}{\partial \boldsymbol{u}}\Big|_{\boldsymbol{u}^{(0)}} \cdot \left(\boldsymbol{u} - \boldsymbol{u}^{(0)}\right)$$
(2.2)

$$f_s(u) \approx f_s^{(0)} + k_t^{(0)} \cdot (u - u^{(0)})$$
 (2.3)

, donde $f_s^{(0)}$ corresponde a la fuerza resistente en el estado de carga anterior y $k_t^{(0)}$ corresponde a la matriz de rigidez tangente o la variación de la fuerza resistente f_s con respecto al desplazamiento u, calculada en el punto $u^{(0)}$.

El vector de fuerzas residuales $R^{(0)}$ se obtiene restando las fuerzas aplicadas y la primera estimación del vector de fuerzas resistentes.

$$\boldsymbol{R}^{(0)} = \boldsymbol{P} - \boldsymbol{f}_{s}^{(0)} = \boldsymbol{k}_{t}^{(0)} \cdot \Delta \boldsymbol{u}^{(0)}$$
(2.4)

$$\boldsymbol{R}^{(0)} = \boldsymbol{k}_{t}^{(0)} \cdot \Delta \boldsymbol{u}^{(0)}$$
(2.5)

, donde $\Delta u^{(0)}$ corresponde al incremento de desplazamientos. Gráficamente estos valores se pueden ver en la figura II-1. Luego, el incremento de desplazamientos se estima de la siguiente forma:

$$\Delta \boldsymbol{u}^{(0)} = \left(\boldsymbol{k}_{t}^{(0)}\right)^{-1} \cdot \boldsymbol{R}^{(0)}$$
(2.6)

Por lo tanto, la nueva estimación de los desplazamientos es:

$$\boldsymbol{u}^{(1)} = \boldsymbol{u}^{(0)} + \Delta \boldsymbol{u}^{(0)} \tag{2.7}$$

Figura II-1. Representación gráfica de la estrategia de solución Pushover (Hube, 2013).

Si para el desplazamiento $u^{(1)}$ no se cumple la ecuación de equilibrio (Ec 2.1), es necesario realizar iteraciones de Newton-Raphson hasta lograr el equilibrio. Para las iteraciones subsiguientes, se puede realizar el siguiente ajuste a las ecuaciones mostradas:

$$\mathbf{R}^{(j)} = \mathbf{P} - \mathbf{f}_{s}^{(j)} = \mathbf{k}_{t}^{(j)} \cdot \Delta \mathbf{u}^{(j)}$$
(2.8)

$$\boldsymbol{R}^{(j)} = \boldsymbol{k}_{\boldsymbol{t}}^{(j)} \cdot \Delta \boldsymbol{u}^{(j)}$$
(2.9)

$$\Delta \boldsymbol{u}^{(j)} = \left(\boldsymbol{k}_{t}^{(j)}\right)^{-1} \cdot \boldsymbol{R}^{(j)}$$
(2.10)

$$u^{(j+1)} = u^{(j)} + \Delta u^{(j)}$$
(2.11)

, donde el superíndice (j) denota el estado en la iteración j y el superíndice (j+1) el estado en la iteración j+1 del análisis estático no lineal.

La estrategia de solución corresponde al método iterativo de Newton-Raphson, el cual utiliza la matriz tangente de la estructura para cada iteración, dando una solución más rápida entre los distintos estados conocidos del pushover, lo que se ilustra en la figura II-2 (Adaptado de Hube, 2013).

Figura II-2. Representación gráfica del método de Newton-Raphson, para la solución del Pushover (Adaptado de Hube, 2013).

Con el procedimiento descrito anteriormente, y utilizando varios incrementos de carga, se puede obtenerla curva de fuerza aplicada v/s el desplazamiento de techo. En esta curva se puede observar gráficamente para que fuerza y desplazamiento empieza la no linealidad en una estructura. El resumen de la metodología para encontrar los desplazamientos u de una estructura, para el incremento de carga o paso i, se describe a continuación. En la estructura se asume que hay columnas elásticas y vigas que pueden tener rótulas plásticas en sus extremos.

1. Se aplica un vector de fuerzas Pi, el cual se obtiene de:

$$\boldsymbol{P_i} = \lambda_i \cdot \boldsymbol{P_{ref}} \tag{2.12}$$

, donde λ_i corresponde al factor de carga asociado al pushover (λ_i es un escalar valor positivo mayor o igual a 1) y *P*_{ref} corresponde al vector de fuerzas de referencia.

Iteración 1 del paso i: La primera estimación de los desplazamientos u(0) de la estructura corresponde a los desplazamientos obtenidos en la última iteración del paso i-1 (desplazamiento lateral y giros). El vector u, para la primera estimación corresponde a:

$$\boldsymbol{u} = \boldsymbol{u}^{(j-1)} \tag{2.13}$$

3. Iteración 2 o más: los desplazamientos u de estas iteraciones se estiman de:

$$\Delta \boldsymbol{u}^{(j)} = (\boldsymbol{K}_t)^{-1} \cdot \boldsymbol{R}_i^{(j)}$$
(2.14)
$$\boldsymbol{R}_i^{(j)} = \boldsymbol{P}_i - \boldsymbol{f}_s^{(j)}$$
(2.15)

, donde $\mathbf{R}_{i}^{(j)}$ es el vector de fuerzas residual de la iteración j del paso i del pushover, $f_{s}^{(j)}$ es el vector de fuerzas resistentes de la estructura calculado con los desplazamientos finales de la iteración j del paso i del pushover, P_{i} es el vector de fuerzas aplicada a la estructura en el paso i del pushover y K_{t} es la matriz de rigidez tangente de la estructura. El vector \boldsymbol{u} , para las iteraciones 2 o superiores, tiene la siguiente forma:

$$\boldsymbol{u} = \boldsymbol{u}^{(j-1)} + \Delta \boldsymbol{u}^{(j)} \tag{2.16}$$

, donde el superíndice indica la iteración, asociada al paso i del pushover.

4. Con la estimación de los desplazamientos, se calculan los vectores de fuerzas resistentes las vigas y columnas de los elementos:

$$\boldsymbol{f}_{\boldsymbol{s} \text{ columna}} = \boldsymbol{K}_{\boldsymbol{columna}} \cdot \boldsymbol{b}_{\boldsymbol{columna}} \cdot \boldsymbol{u} \qquad (2.17)$$

$$\boldsymbol{f}_{\boldsymbol{s}\,\boldsymbol{v}\boldsymbol{i}\boldsymbol{g}\boldsymbol{a}} = \boldsymbol{q} \tag{2.18}$$

, donde q corresponde a las fuerzas resistentes de la viga (obtenidas del análisis no lineal local de la viga, ocupando sus propiedades tangentes), u corresponde a los desplazamientos en coordenadas globales de todos los grados de libertad y $b_{columna}$ corresponde a la matriz de colocación entre los grados de libertad locales y los grados de libertad globales, para las columnas.

Las fuerzas resistentes de las vigas y columnas se estiman con ecuaciones diferentes debido a que la no linealidad del sistema se estiman para las vigas y las columnas son elementos lineales elásticos.

- 5. Con $K_{columna}$ y K_{viga} , que son calculadas ocupando las propiedades tangentes de cada elemento, se estima la matriz de rigidez tangente de la estructura.
- 6. El vector de fuerzas resistentes de la estructura se obtiene sumando:

$$\boldsymbol{f}_{\boldsymbol{s}}^{(j)} = \sum \left(\boldsymbol{b}_{\boldsymbol{i}}^{T} \cdot \boldsymbol{f}_{\boldsymbol{s}_{\boldsymbol{i}}} \right) \tag{2.19}$$

$$R_i^{(j)} = P_i - f_s^{(j)}$$
(2.20)

,donde f_{si} corresponde a las fuerzas resistentes de los distintos elementos y b_i^T corresponde al vector de colocación de los distintos elementos de la estructura.

7. Si la norma del vector residual $\mathbf{R}_i^{(j)}$ es menor que una tolerancia dada, se terminan las iteraciones, se almacenan los datos obtenidos (momentos y deformaciones). Se actualiza el factor de carga λ y se procede a realizar el paso i + 1 del pushover.

II.2 Elemento Viga con Rótulas Plásticas

El elemento estructural que se describe en esta sección consiste en una viga con rótulas plásticas en sus extremos. Este elemento se denomina "*One Component Series Model*", el cual corresponde a un elemento lineal elástico conectado en serie con un resorte rigido-plástico en cada uno de sus extremos. La viga tiene dos grados de libertad y se muestra en la figura II-5. El comportamiento de la rótula plástica está gobernado por las siguientes ecuaciones (Bozorgnia y Bertero, 2004).

$$\boldsymbol{v} = \boldsymbol{v}_{\boldsymbol{e}} + \boldsymbol{v}_{\boldsymbol{p}} \tag{2.21}$$

$$\boldsymbol{f} = \frac{\partial \boldsymbol{v}}{\partial \boldsymbol{q}} = \frac{\partial \boldsymbol{v}_e}{\partial \boldsymbol{q}} + \frac{\partial \boldsymbol{v}_p}{\partial \boldsymbol{q}} = \boldsymbol{f}_e + \boldsymbol{f}_p \tag{2.22}$$

, donde **v** corresponde al vector con los giros en los grados de libertad (grados de libertad 2 y 3 en figura II-5) y v_e y v_p corresponden a los vectores con los giros elásticos y plásticos de las rótulas plásticas, respectivamente. Los giros del lado izquierdo de la viga, gráficamente se observan en la figura II-3.

Figura II-3. Modelo utilizado para la viga. a) Viga no deformada. b) Viga deformada

Los giros elásticos corresponden a los que se producen en el elemento elástico lineal, mostrado en la figura II-3. En cambio, los giros plásticos se producen sobre el resorte rígidoplástico, mostrado en la figura II-3, el cual presenta un giro relativo para momentos mayores al momento plástico de la viga, lo que se ilustra en la figura II-4.

Figura II-4. Giros elásticos y plásticos de las rótulas plásticas.

Para finalizar, la matriz de flexibilidad f del elemento se puede estimar como la suma de las matrices de flexibilidad elástica f_e (Ec. 2.32) y la matriz de flexibilidad plástica f_p (Ec. 2.36).

Figura II-5. Grados de libertad asociados a la viga.

Para estimar las fuerzas resistentes nodales y la matriz de rigidez de la viga se utiliza la estrategia de solución iterativa de Newton-Raphson cuyo principio fue mostrado en la figura

II-3. Con esta metodología se pueden obtener las fuerzas q (momentos) y los desplazamientos v (giros lineales y plásticos) para cada grado de libertad (gdl) de la viga.

La formulación para resolver la viga con plasticidad concentrada, implica que dado los giros v, se requiere determinar los momentos resistentes q y la matriz de rigidez tangente de la viga K_t . Este cálculo equivale a determinar el estado de la viga. Se cuenta con la ecuación de compatibilidad no lineal:

$$\boldsymbol{v} - \left(\boldsymbol{v}_{\boldsymbol{e}} + \boldsymbol{v}_{\boldsymbol{p}}\right) = \boldsymbol{0} \tag{2.23}$$

Donde los giros v_e y v_p se estiman con las siguientes ecuaciones, y en donde los giros de as rótulas plásticas se relacionan con el momento a través de la relación constitutiva mostrada en la figura II-6:

$$\boldsymbol{v}_{\boldsymbol{e}} = \boldsymbol{f}_{\boldsymbol{e}} \cdot \boldsymbol{q} \tag{2.24}$$

$$\boldsymbol{v}_{\boldsymbol{p}} = \boldsymbol{f}_{\boldsymbol{p}} \cdot (\boldsymbol{q} - \boldsymbol{q}_{\boldsymbol{p}}) \tag{2.25}$$

Figura II-6. Curva constitutiva del resorte rígido-plástico.

De la figura II-6, se observa que la rigidez de cada rótula plástica está multiplicada por un factor η que corresponde al endurecimiento post-fluencia. Por otro lado, q_p corresponde al momento plástico o momento de fluencia de la rótula plástica.

Para estimar el vector q, es necesario expandir la ecuación (2.23) en serie de Taylor las deformaciones v_e y v_p en torno al inicio o punto O, que corresponde al estado en que la viga no se encuentra sometida a esfuerzos (momentos nulos), obteniéndose la siguiente expresión:

$$\boldsymbol{v} - \left(\boldsymbol{v}_{e0} + \frac{\partial \boldsymbol{v}_e}{\partial \boldsymbol{q}} \cdot \Delta \boldsymbol{q} + \boldsymbol{v}_{p0} + \frac{\partial \boldsymbol{v}_p}{\partial \boldsymbol{q}} \cdot \Delta \boldsymbol{q}\right) = 0$$
(2.26)

Se define el error en la primera estimación de los giros v_{ro} de la siguiente forma:

$$v_{r0} = v - (v_{e0} + v_{p0}) \tag{2.27}$$

Reemplazando el error en la primera estimación de los giros, y agrupando términos, se llega a la siguiente expresión:

$$\boldsymbol{v_{r0}} = \left(\boldsymbol{f_e} + \boldsymbol{f_p}\right) \cdot \Delta \boldsymbol{q} \tag{2.28}$$

Despejando de la ecuación anterior, el incremento de momentos Δq se obtiene de la siguiente forma:

$$\Delta \boldsymbol{q} = \left(\boldsymbol{f}_{\boldsymbol{e}} + \boldsymbol{f}_{\boldsymbol{p}}\right)^{-1} \cdot \boldsymbol{v}_{\boldsymbol{r}\boldsymbol{0}} = \boldsymbol{K} \cdot \boldsymbol{v}_{\boldsymbol{r}\boldsymbol{0}}$$
(2.29)

El procedimiento anterior se repite hasta la convergencia de la diferencia de momentos y cuando el error del desplazamiento o el residual de desplazamientos v_{ro} es menor a una tolerancia dada.

El procedimiento detallado para estimar los momentos q y la matriz de rigidez de una viga se resumen a continuación.

1. Conocidos los giros de la viga v, se inicializan los momentos en los extremos de la viga q y los giros plásticos v_p , haciéndolos igual a 0. Se asigna también el residual de desplazamientos (giros en los extremos de la viga), de la siguiente forma:

$$\boldsymbol{v}_{r} = \boldsymbol{v} = \begin{pmatrix} \boldsymbol{\theta}_{gdl\,2} \\ \boldsymbol{\theta}_{gdl\,3} \end{pmatrix} \tag{2.30}$$

2. Con la matriz de flexibilidad elástica de la viga f se estima el incremento de momentos Δq , de acuerdo a la siguiente ecuación, considerando la matriz de flexibilidad elástica para la primera iteración y la matriz de flexibilidad tangente para las iteraciones siguientes.

$$\Delta \boldsymbol{q} = \boldsymbol{f}^{-1} \cdot \boldsymbol{v}_{\boldsymbol{r}} \tag{2.31}$$

$$\boldsymbol{f}_{\boldsymbol{e}} = \frac{L_{viga}}{6 \cdot E \cdot I_{viga}} \begin{bmatrix} 2 & -1\\ -1 & 2 \end{bmatrix}$$
(2.32)

 Se calcula la nueva estimación de los momentos flectores y se obtienen los giros elásticos:

$$\boldsymbol{q} = \boldsymbol{q} + \Delta \boldsymbol{q} \tag{2.33}$$

$$\boldsymbol{v}_{\boldsymbol{e}} = \boldsymbol{f}_{\boldsymbol{e}} \cdot \boldsymbol{q} \tag{2.34}$$

4. Si alguno de los momentos extremos es mayor que el momento de fluencia, se asigna a ese grado de libertad un marcador "m" (valores de m corresponden a: 1 si fluye, 0 si no fluye, para cada grado de libertad activo en la viga de manera independiente).

5. Si existe fluencia en alguna de las rótulas plásticas, se obtienen el vector de giros plásticos y la matriz de flexibilidad plástica, de la siguiente forma:

$$\boldsymbol{v}_{\boldsymbol{p}} = \boldsymbol{f}_{\boldsymbol{p}} \cdot (\boldsymbol{q} - \boldsymbol{M}_{\boldsymbol{p}}) \tag{2.35}$$

$$\boldsymbol{f}_{\boldsymbol{p}} = \frac{L_{viga}}{6 \cdot E \cdot I_{viga}} \cdot \begin{bmatrix} \frac{m_{gdl\,2}}{\eta} & 0\\ \eta & \frac{m_{gdl\,3}}{\eta} \end{bmatrix}$$
(2.36)

, donde M_p corresponde a los momentos de fluencia de la viga, f_p es la matriz de flexibilidad plástica de la viga, $m_{gdl 2}$ y $m_{gdl 3}$ son los marcadores antes mencionados y η corresponde a la razón post-fluencia.

 Conocidas los giros en las rótulas plásticas, se actualiza el residual de deformaciones y se actualiza la matriz de flexibilidad de la viga y por consecuencia, la matriz de rigidez de la viga.

$$\boldsymbol{v}_r = \boldsymbol{v} - \left(\boldsymbol{v}_e + \boldsymbol{v}_p\right) \tag{2.37}$$

$$f = f_e + f_p \tag{2.38}$$

$$K_{viga} = f^{-1}$$
 (2.39)

7. Si la norma del vector v_r es menor a la tolerancia pre-establecida, se terminan las iteraciones para estimar los momentos q. En caso contrario, se deben estimar nuevamente los momentos y deformaciones en los extremos de la viga, mostrados en el punto 2 del presente listado y considerando el nuevo residual de desplazamientos.

II.3 Solución del Pushover de una Estructura con Elementos Vigas con Rótulas Plásticas

Para la solución del análisis estático no lineal de una estructura con elementos vigas con rótulas plásticas, se deben mezclar los procedimientos mostrados en las secciones II.1 y II.2 del presente documento.

La forma en que estos procedimientos se mezclan se muestra en el diagrama de flujo de la figura II-7, en donde se pueden apreciar la existencia de ciclos anidados o *Nested Loops*. En primer lugar, se comienza resolviendo el pushover para la estructura. Una vez obtenido los giros de la viga en sus extremos, es necesario determinar el estado de la viga siguiendo el procedimiento de la sección II.2. La determinación del estado requiere de una solución iterativa. Una vez alcanzada la convergencia del elemento, se prosigue con la solución del problema iterativo de la estructura (sección II.1) hasta encontrar la convergencia del sistema estructural completo, en que el vector de fuerzas aplicadas, es igual al vector de fuerzas resistentes (Ec. 2.1).

Figura II-7. Diagrama de flujo de la solución del pushover de la estructura con rótulas plásticas en las vigas.

III DESCRIPCIÓN DE LA ESTRUCTURA

Este estudio considera un marco de un piso y un vano sometido a una fuerza lateral. Las columnas están empotradas en la base y el comportamiento no lineal del marco se concentra en la viga. La viga se modela considerando rótulas plásticas en los extremos y las columnas se modelan elásticamente. Para las vigas se consideran dos casos de comportamiento no lineal para la relación momento-curvatura de las rótulas:

- 1. Comportamiento elasto-plástico perfecto.
- 2. Comportamiento con 5% de endurecimiento post-fluencia.

El marco es de hormigón armado, el módulo de elasticidad considerado es E= 20000 (MPa) y se desprecian las deformaciones de corte. Las dimensiones de las columnas y las vigas del marco se muestran en la figura III-1 y los grados de libertad de la estructura se muestran en la figura III-2. Las propiedades de la estructura corresponden a las siguientes:

- 1. Columna izquierda: 40 x 40 (cm). Longitud: 360 (cm).
- 2. Viga: 40 x 40 (cm). Longitud: 720 (cm).
- 3. Columna derecha: 40 x 80 (cm). Longitud: 360 (cm).

Figura III-1. Dimensiones de la estructura analizada.

Figura III-2. Grados de libertad de la estructura analizada.

La matriz de rigidez de la estructura, escrita de manera algebraica y numérica (en unidades de N y m) es:

$$K = \begin{bmatrix} \frac{12EI_{coli}}{L_{coli}^{3}} + \frac{12EI_{cold}}{L_{cold}^{2}} & \frac{6EI_{coli}}{L_{coli}^{2}} & \frac{6EI_{cold}}{L_{cold}^{2}} \\ \frac{6EI_{coli}}{L_{coli}^{2}} & \frac{4EI_{coli}}{L_{coli}} + \frac{4EI_{viga}}{L_{viga}} & \frac{2EI_{viga}}{L_{viga}} \\ \frac{6EI_{cold}}{L_{cold}^{2}} & \frac{2EI_{viga}}{L_{viga}} & \frac{4EI_{cold}}{L_{cold}} + \frac{4EI_{viga}}{L_{viga}} \end{bmatrix}$$
(3.1)

$$K = \begin{bmatrix} 32921810.7 & 19753086.42 & 39506172.8 \\ 19753086.42 & 7111111.11 & 11851851.9 \\ 39506172.8 & 11851851.9 & 118518519 \end{bmatrix}$$
(3.2)

Si se considera una fuerza lateral de 10 (kN), se obtienen el siguiente diagrama de momento flector de la estructura, bajo condiciones lineales, mostrado en la figura III-3 y un desplazamiento lateral, mostrado en la figura III-4. El desplazamiento de techo lateral, para la fuerza de 10 (kN), corresponde a 0.000618 (m), lo que implica una rigidez lateral de 16181.229 (kN/m).

Figura III-3. Diagrama de momento flector (kN-m) para carga lateral de 10 (kN).

Figura III-4. Deformada de la estructura para carga lateral de 10 (kN).

Para el comportamiento no lineal de la estructura, se define de manera arbitraria un momento plástico de 50 (kN-m). De este modo, la fuerza lateral que genera el inicio de la fluencia es

80.56 (kN). Con las propiedades seccionales elegidas, se puede asegurar que el nudo derecho de la viga fluye primero, debido a que el momento en el extremo derecho de la viga es mayor al momento en el extremo izquierdo (ver Figura III.3). De esta forma, con la geometría elegida, el análisis estático no lineal se puede comprobar para tres estados de plastificación: (1) estructura lineal, (2) estructura en rango no lineal con solo una rótula fluyendo y (3) estructura en rango no lineal con las dos rótulas fluyendo.

IV ANÁLISIS ESTÁTICO NO LINEAL CON SAP 2000

El análisis no lineal de la estructura utilizada en esta tesis, usando SAP 2000 se describe en este capítulo, tanto para el caso con rótulas plásticas elasto-plásticas como para el caso con rótulas plásticas con endurecimiento.

En primer lugar se muestra el modelo estructural del programa SAP 2000 y luego se resumen la metodología para asignar las propiedades no lineales de las rótulas plásticas en el programaSAP2000. Las unidades consideradas en el modelo estructural son kilo Newton (kN), metro (m) y segundo (s).

IV.1 Modelo estructural en SAP 2000

El modelo analizado en SAP2000 se muestra en la figura IV-1 y está compuesto por tres elementos *frame*, que modelan las columnas y la viga. Las propiedades usadas en el modelo estructural fueron mencionadas en el capítulo III del presente documento.

Figura IV-1. Modelo SAP 2000 del marco analizado.

La figura IV-1 muestra que los nodos superiores tienen restringido el desplazamiento vertical, de modo que la estructura tenga los tres grados de libertad definidos en la figura III-2. Cabe agregar que no existe desplazamiento relativo entre los nodos de la viga, es decir, existe una restricción cinemática del tipo diafragma, que compatibiliza los desplazamientos laterales en la parte superior de las columnas derechas e izquierda.

Al modelo se le aplica una carga lateral de 10 (kN), para un estado de carga definido como P_{ref} . Luego, este estado de carga, se multiplica por el multiplicador de carga λ , siendo λ un valor entero entre 1 y 10. La carga lateral de 10 (kN), aplicada a la estructura se puede ver en la figura IV-2.

Figura IV-2. Carga lateral de 10 kN, asociada al estado de carga Pref.

Para poder definir el multiplicador de carga, se crea el estado Pushover (análisis estático no lineal) y se asigna un multiplicador de carga de 10, como se muestra en la figura IV-3.

Figura IV-3. Opciones del análisis estático no lineal en SAP 2000.

Luego, se define en las opciones de "*Results Saved*", que se guarden múltiples estados del análisis estático no lineal, y además de que se almacenen 10 pasos ("*Minimum Number of Saved States*" y "*Maximum Number of Saved States*"). De esta forma se asegura que los multiplicadores de carga sean números enteros, partiendo del 1 y terminando el 10. La figura IV-4 muestra los parámetros utilizados en SAP 2000.

Load Case Data - Nonlinear Static		Results Saved for Nonlinear Static Load Cases
Load Case Name Notes Pushover Set Def Name Initial Conditions Modify/Show Initial Conditions Term Notes Modify/Show Modify/Show Initial Conditions Start from Unstressed State Continue from State at End of Nonlinear Case Important Note: Loads from this previous case are included in the current case Modal Load Case All Modal Loads Applied Use Modes from Case MDDAL Loads Applied Load Sterr Load Type Load Name Scale Factor Load Pattern Pref 10 Add Modify Delete Delete	Load Case Type Static Design Analysis Type C Linear C Nonlinear C Nonlinear Staged Construction Geometric Nonlinearity Parameters C None C P-Delta C P-Delta plus Large Displacements	Results Saved C Final State Only For Each Stage Minimum Number of Saved States 10 Maximum Number of Saved States 10 Save positive Displacement Increments Only OK
Other Parameters Full Load Modify/Show Load Application Full Load Modify/Show Results Saved Multiple States Modify/Show Nonlinear Parameters Default Modify/Show	DK Cancel	

Figura IV-4. Estados de la estructura guardados del análisis estático no lineal.

IV.2 Asignación de propiedades de las rótulas plásticas

El programa SAP 2000 tiene implementado dos tipos de rótulas para elementos tipo viga: con comportamiento frágil o con comportamiento dúctil, siendo estas últimas las utilizadas en este estudio. Las rótulas con comportamiento frágil corresponden a las que cuando se someten a un momento igual al momento plástico, dejan de tomar esfuerzos para luego descargarse en su totalidad. Los dos tipos de rótulas plásticas disponibles en SAP 2000 son:

 Rótula con control de fuerza (*Force Controlled Hinge*): Corresponde a la modelación de rótulas de comportamiento frágil. Rótula con control de deformación (*Deformation Controlled Hinge*): Corresponde a la modelación de rótulas de comportamiento dúctil.

A continuación se muestran los pasos necesarios para definir las rótulas del tipo *Deformation Controlled* en SAP 2000. En el menú definir, se eligen las propiedades de las secciones y se hace click en *Hinge Properties*, como se muestra en la figura IV-5. En el menú de definición de rótulas plásticas, se elige *Deformation controlled*, mostrado en la figura IV-6.

Se asignan las propiedades de la rótula para el esfuerzo de flexión en el eje 3 (momento M3). Para este tipo de rótula plástica se asignan valores para cada par de fuerza y desplazamiento normalizada (con respecto al momento plástico y giro de fluencia respectivamente), para simular un comportamiento elasto-plástico perfecto o considerando un 5% de rígidez postfluencia (Figura IV-7). Cabe agregar que para la rótula plástica para el tipo *Deformation Controlled Hinge* se puede definir una curva Momento-Rotación o también Momento-Curvatura, siendo utilizado el primer tipo en este estudio.

Figura IV-5. Comando (menú) para definir las propiedades de las rótulas.

(V 40x40	10.00
• C 40x40	Define Frame Hinge Properties Defined Hinge Props Click to: Add New Property Hinge E-P Perfecto Hinge hardening 5% Modify/Show Property Delete Property Show Hinge Details Show Generated Property OK Cancel	ps

Figura IV-6. Definición del tipo de rótula, Deformation Controlled Hinge.

Figura IV-7. Definición de propiedades de rótula, Deformation Controlled Hinge.

Cabe agregar que las propiedades mostradas en la figura IV-7 se deben ingresar de manera manual, tanto el momento fluencia o momento plástico (*"Moment SF"*) y la rotación de fluencia (*"Rotation SF"*). La rotación de fluencia se calcula con la siguiente ecuación:

$$\theta_y = \frac{M_y}{\frac{6EI}{L}} \tag{4.1}$$

Siendo para el caso de estudio, $\theta_y = 0.001406$ (rad).

Las curvas del código FEMA 356 (FEMA ,2000) mostradas en la figura IV-8, vienen por defecto incluidas en el software SAP2000 y se pueden utilizar para modelar un comportamiento más real de las rótulas plásticas (comportamiento de endurecimiento post-fluencia y perdida de rigidez). Cabe agregar que solo se pueden modelar las curvas mencionadas con rótulas del tipo "*Deformation Controlled*" y los distintos pares de fuerza y deformación están tabuladas en la norma ya mencionada.

Figura IV-8. Tipos de curvas de comportamiento no lineal, FEMA 356.

IV.3 Asignación de rótulas plásticas a elementos viga en SAP 2000

Una vez definidos los distintos tipos de rótulas plásticas que pueden afectar a los elementos estructurales, se procede a asignar estas rótulas a los elementos viga que se comportarán de manera no lineal. Para el caso de este estudio, solo la viga tendrá rótulas plásticas en sus extremos.

Para asignar rótulas plásticas a un elemento viga, en primer lugar hay que seleccionar el elemento, luego en el menú asignar se elige la opción *frame* y luego *Hinges*, mostrado en la figura IV-9. Se elige el tipo de rótula plástica definidas previamente y se elige la posición relativa dentro del elemento, mostrado en la figura IV-10. Las posiciones relativas pueden ser valores entre 0 y 1, donde 0 es el origen del elemento viga y 1 es el final del elemento seleccionado. Sin embargo, se pueden utilizar distintos valores entre 0 y 1, indicando las posiciones de las rótulas plásticas.

Figura IV-9. Menú para asignar las rótulas a elementos frame.

K SAP2000 v15.0.0 Ultimate - Pushover NL_DC_et	ndure	imiento					A REAL PROPERTY AND A DESCRIPTION OF THE OWNER.
File Edit View Define Draw Select	Ass	ign Analyze Display	Design Optio	ns T	Tools Help		
🗅 🎂 🗟 🚔 🤌 🔍 🔓 🕨 🏖		Joint		n	w @ 60 🛧 🖓 號 🖬 🍾		11/1 牡甸参 田 🖉 尾崎区 🛛 - 🖬 - 🧏 - り・ 底 🔽
Joint Loads (Pref) (As Defined)		Frame			Frame Sections	1	
R		Cable			Property Modifiers		
Ŧ		Tendon			Material Property Overwrites		
•	-	Area			Releases/Partial Fixity	\mathbf{k}	Frame Hinge Assignments
		Solid			Local Axes	12	From Vines Assimum Data
		Link/Support			Reverse Connectivity		Hinge Projecty Belative Distance
		cinic support			End (Length) Offsets		Hinge hardening 5% 💌 0.
XX		Joint Loads			Insertion Point		Hinge hardening 5% 0. Add
		Frame Loads			End Skews		ninge nardening 5% 1.
-		Cable Loads			Fireproofing		Modity
0×1		Tendon Loads			Output Stations		Delete
		Area Loads			P-Delta Force		
		Solid Loads			Path		
ő		Link/Support Loads			Tension/Compression Limits		Auto Hinge Assignment Data
\times		loint Patternr			Hinges		
E7		Joint Putterns		-	Hinge Overwrites		
	10	Assign to Group	Ctrl+Shift+G		Line Springs		Modify/Show Auto Hinge Assignment Data
₩ +		Update All Generated Hi	nge Properties		Line Mass		
		Clear Display of Assigns			Material Temperatures		Lancel
		Copy Assigns		-	Automatic Frame Mesh		
-+4		Paste Assigns					
14	_			_			

Figura IV-10. Asignación de tipo de rótula y posición relativa al elemento.

IV.4 Resultados análisis estático no lineal con SAP 2000

El desplazamiento de techo versus corte basal de la estructura para el caso con rótulas perfectamente elastoplásticas y para el caso con endurecimiento, se muestran en las figuras IV-11 y IV-12, respectivamente. Los valores de estas figuras se encuentran tabulados en la tabla IV-1.

	Desplazamiento u (m)	Desplazamiento u (m)
Corte Basal (kN)	SAP 2000, rótulas	SAP 2000, rótulas con
	Elastoplásticas	endurecimiento
10	0.000618	0.000618
20	0.001236	0.001236
30	0.001854	0.001854
40	0.002472	0.002472
50	0.00309	0.00309
60	0.003708	0.003708
70	0.004326	0.004326
80	0.004944	0.004944
90	0.005898	0.005853
100	0.007113	0.00699

Tabla IV-1. Tabla resultados SAP 2000.

Figura IV-11. Curva fuerza aplicada v/s desplazamiento de techo, rótulas elasto-plásticas.

Figura IV-12. Curva fuerza aplicada v/s desplazamiento de techo, rótulas con

endurecimiento 5%.

Para el caso con rótulas elastoplásticas, la primera rótula plastifica para un corte basal de 90 (kN), en la rótula del extremo derecho de la viga, para un desplazamiento de 0.005898 (m). Posteriormente, para una fuerza lateral aplicada de 100 (kN), la segunda rótula alcanza la plastificación para un desplazamiento de 0.007113 (m). Para el caso con rótulas elastoplásticas, se tiene una rigidez lateral inicial de 16181.2298 (kN/m), la cual es igual a la calculada en la sección III del presente documento. La rigidez lateral se reduce a 10482.1803 (kN/m) para el estado asociado a la primera plastificación, lo que significa una reducción de 35.22%. Finalmente, para un corte basal de 100 (kN), la rigidez lateral tangente corresponde a 8230.452 (kN/m), presentando una reducción de 49.13% con respecto a la rigidez inicial de la estructura y una reducción del 21.48%, con respecto a la rigidez tangente del paso anterior. La rigidez anterior, para el estado en que ambas rótulas estén plastificadas se puede verificar manualmente, al considerar dos columnas en voladizo y considerando la rigidez lateral de éstas, encontrándose una rigidez igual a 8230.452 (kN/m), que presenta un error de 0% en comparación a la obtenida anteriormente.

Para el caso con rótulas plástica con endurecimiento, la primera rótula plastifica para un corte basal de 90 (kN), en la rótula del extremo derecho de la viga para un desplazamiento de 0.005853 (m). Posteriormente, para una fuerza lateral aplicada de 100 (kN), la segunda rótula alcanza la plastificación, con un desplazamiento de 0.00699 (m). Considerando lo anterior, inicialmente, se tiene una rigidez lateral de 16181.2298 (kN/m). Luego de la primera plastificación, para una fuerza lateral aplicada de 90 (kN), la rigidez lateral se reduce a 11001.1001 (kN/m) lo que significa una reducción de 32.013%. Finalmente, para un corte basal de 100 (kN), la rigidez lateral tangente corresponde a 8795.074 (kN/m) presentando

una reducción de 45.64% con respecto a la rigidez lateral inicial de la estructura y una reducción del 20.052%, con respecto a la rigidez lateral tangente del estado anterior.

IV.5 Comparación resultados SAP 2000 entre distintos tipos de rótulas

Del análisis estático no lineal con SAP 2000, se puede afirmar que el marco con rótulas con endurecimiento presentó menores desplazamientos que el marco con rótulas elasto-plásticas. Los desplazamientos fueron 0.76% menores para la plastificación de una rótula, para la fuerza lateral de 90 (kN) y 1.73% menores para el caso en que ambas rótulas estén plastificadas, para lun corte basal 100 (kN). Esto se debe a que las vigas con rótulas con endurecimiento siguen tomando carga con un 5% de rigidez en comparación a la rigidez inicial. La comparación se muestra en la figura IV-13.

Figura IV-13. Comparación de curvas fuerza aplicada v/s desplazamiento de techo.

V ANÁLISIS ESTATICO NO LINEAL CON EXCEL

En este capítulo se describe el análisis estático no lineal realizado en Excel. Para realizar el análisis estático no lineal en Excel, se utiliza la metodología descrita en el capítulo II de este documento. Finalmente, se presenta la comparación entre los resultados obtenidos, para rótulas perfectamente elasto-plásticas y con endurecimiento post-fluencia de 5%.

V.1 Características y Funciones de la Planilla Excel Elaborada

La planilla Excel considera la metodología mostrada en el capítulo II del presente documento, la cual hace el análisis estático no lineal mediante la solución iterativa de Newton-Raphson y los ciclos anidados para resolver cada paso del pushover.

Primero se ingresan las propiedades geométricas y constitutivas de los distintos elementos, lo que se muestra en la figura V-1. Luego se calculan las matrices de rigidez de las columnas y la matriz de flexibilidad de la viga, así como también se asignan las matrices de colocación de los elementos (que relaciona grados de libertad locales con los grados de libertad globales), como se muestra en la figura V-2.

Constitutiva Elementos

E	20000	(Mpa)
	2000000	(kN/m2)

Propiedades seccionales

Columna Izquierda

b	0.4	(m)
h	0.4	(m)
I col. Izq	0.00213333	(m4)
A col. Izq	0.16	(m2)
L	3.6	(m)

Viga

b	0.4	(m)
h	0.4	(m)
l viga	0.00213333	(m4)
A viga	0.16	(m2)
L	7.2	(m)

Columna Derecha

b	0.8	(m)
h	0.4	(m)
I col. Der.	0.00426667	(m4)
A col. Der.	0.32	(m2)
Largo	3.6	(m)

Figura V-1. Propiedades geométricas y constitutivas elementos viga.

Figura V-2. Matrices de rigidez y flexibilidad y matriz de colocación.

Para estimar los desplazamientos de la estructura para una cierta carga latera se elige un multiplicador de carga λ . En esta sección, se detallan los cálculos para λ =9 para el caso de rótulas con endurecimiento de 5%. En este paso comienza la fluencia en la viga. Luego con el valor de λ , se estima el vector de fuerzas aplicadas $\mathbf{P}=\lambda \cdot \mathbf{P}_{ref}$ (Ec. 2.12).

Para la primera iteración, los desplazamientos y giros de los gdl de la estructura se consideran iguales a los de la última iteración del paso anterior del pushover (Ec. 2.13), como se muestra en la figura V-3. Para una carga de 80 (kN), el vector u que satisface la ecuación de equilibrio (Ec 2.1) corresponde a:

$$\boldsymbol{u} = \begin{pmatrix} 0.004944 \ (m) \\ -0.001117 \ (rad) \\ -0.001536 \ (rad) \end{pmatrix}$$
(5.1)

Figura V-3. Desplazamientos y giros de los grados de libertad considerados.

Conocidos los grados de libertad de la estructura, se determina el estado del elemento viga (vector de fuerzas resistentes y matriz de rigidez lateral) siguiendo el proceso iterativo descrito en la sección II.2. En este proceso se considera la matriz de flexibilidad elástica f_e (Ec. 2.32), el vector de giros residuales (Ec. 2.37), las deformaciones plásticas (Ec. 2.35) y los momentos iniciales de la viga (Ec. 2.33). Para la primera iteración del ciclo de la viga,

los giros residuales (v_r) son los giros obtenidos para la estructura. La primera estimación de los momentos de la viga (q) y del vector de giros plásticos (v_n) son vectores cero. Esta inicialización se muestra en la figura V-4.

Figura V-4. Residual de desplazamientos e inicialización de parámetros, ciclo iterativo viga no lineal.

En segundo lugar, usando el vector de giros residuales y la inversa de la matriz de flexibilidad de la estructura, se estima el incremento de momentos (Ec. 2.31). Este incremento de momentos (Dq en Figura IV.5), se suman a la primera estimación de los momentos en la viga (q=q+Dq). También se asigna un marcador "*m*", el cual toma el valor de 1 para cuando el esfuerzo de momento, asociado a cada grado de libertad considerado, es mayor que el momento plástico o de fluencia, como se muestra en la figura V-5.

Figura V-5. Diferencial de momentos y momentos sobre los elementos no lineales en

En tercer lugar, usando los momentos q de la viga, se estiman los giros elásticos (Ec. 2.34) y los giros plásticos asociados de la viga en esta primera iteración (Ec. 2.35). Adicionalmente, se estima la matriz de flexibilidad plástica de la viga f_p (Ec. 2.36), como se muestra en la figura V-6. Como no se han sobrepasado los momentos plásticos de la viga (50 kN-m), esta matriz es una matriz de ceros.

Figura V-6. Giros de los extremos de la viga y matriz de flexibilidad plástica.

En cuarto lugar se actualiza la matriz de flexibilidad f (Ec. 2.38) de la viga sumando las matrices de flexibilidad plástica f_p (Ec. 2.36) y la matriz de flexibilidad elástica (f_e). Obviamente, la matriz de flexibilidad elástica no cambia durante el análisis estático no lineal, y sólo sufre variaciones la matriz de flexibilidad plástica de la viga. Con los giros elásticos (v_e), y el vector de giros plásticos (v_p) se estima el vector de giros residuales (v_r). En este caso, la norma del vector residual es menor a la tolerancia pre-establecida Tol=1⁻¹⁰ (figura V-7) y por lo tanto finaliza la determinación del estado del elemento viga.

Figura V-7. Matriz de flexibilidad matriz de rigidez y vector de giros residuales de la

viga.

El vector de momentos resistentes q y la rigidez tangente son los siguientes:

$$q = \begin{pmatrix} -44.689\\ -49.655 \end{pmatrix} (kN)$$
(5.2)

$$\boldsymbol{K_{viga}} = \begin{bmatrix} 23703.704 & 11851.852\\ 11851.852 & 23703.704 \end{bmatrix} (kN - m)$$
(5.3)

Con la matriz de rigidez tangente de la viga, y considerando el aporte de rigidez de las columnas, se calcula la matriz de rigidez tangente de la estructura, mostrado en la figura V-8. En esta figura, los valores en amarillo son los valores que pueden cambiar debido a la plasticidad que puede ocurrir en la viga.

Figura V-8. Matriz de rigidez tangente de la estructura, momentos en los extremos y giros plásticos.

Para estimar el vector de fuerzas resistentes de la estructura (Ec. 2.19), es necesario conocer el vector de fuerzas resistentes de cada elemento de la estructura, y luego ensamblarlos a la estructura con las matrices de colocación. Lo mencionado anteriormente se observa en la figura V-9 en donde el vector de fuerzas resistentes de la estructura se muestra a continuación:

$$\boldsymbol{f}_{s} = \begin{bmatrix} 80 \ (kN) \\ 0 \ (kN - m) \\ 0 \ (kN - m) \end{bmatrix}$$
(5.4)

Figura V-9. Fuerzas resistentes de los elementos y fuerza resistente global.

Con el vector de fuerzas resistentes calculado, se calcula el vector de fuerzas residuales de la estructura R (Ec. 2.20) y se calcula la norma de este vector, cuyos valores se muestran a continuación:

$$\mathbf{R} = \begin{bmatrix} 10 \ (kN) \\ 0 \ (kN - m) \\ 0 \ (kN - m) \end{bmatrix}$$
(5.5)

$$\|\mathbf{R}\| = 10 \tag{5.6}$$

La norma del vector residual de la estructura (vector **R**) es mayor que la tolerancia preestablecida Tol=1⁻¹⁰, figura V-10, por lo tanto se requieren iteraciones de Newton Raphson de la estructura. Con la matriz de rigidez tangente actualizada de la estructura y el vector de fuerzas residuales (Ec. 2.14), se estima el incremento de desplazamientos de la estructura, ver figura V-11.

Figura V-10. Residual de fuerzas asociados al paso del pushover.

fs(kN)	R=p-fs (kN)	Matriz de rigidez final iteracion d			du(m)	u (m, rad)
80	10	32921.8107	19753.08642	39506.17284	0.000617974	0.005562
0	0	19753.08642	71111.11111	11851.85185	-0.000139655	-0.001257
0	0.0	39506.17284	11851.85185	118518.5185	-0.0002	-0.001728
Norm R	10					

Figura V-11. Residual de fuerzas mayor a tolerancia y delta de desplazamientos.

La nueva estimación de los desplazamientos de la estructura, mostrada en la figura V-12, que corresponde a:

$$\boldsymbol{u} = \begin{pmatrix} 0.005562 \ (m) \\ -0.001257 \ (rad) \\ -0.001728 \ (rad) \end{pmatrix}$$
(5.7)

Figura V-12. Desplazamientos asociados a la segunda iteración para el paso $\lambda=9$.

Conocidos los desplazamientos de cada grado de libertad de la estructura, se determina el estado del elemento viga (vector de fuerzas resistentes y matriz de rigidez lateral) siguiendo el proceso iterativo descrito en la sección II.2. Para la primera iteración del ciclo de la viga, los giros corresponden a los giros obtenidos para la estructura. Este cálculo se muestra en la figura V-3.

Figura V-13. Residual de desplazamientos y matriz de flexibilidad elástica.

En segundo lugar, con la matriz de rigidez de la viga y el residual de giros, se estima el incremento de momentos y se suman a los momentos existentes sobre los extremos de la viga, que son cero para la primera iteración. En este caso, ambos momentos son mayores a la fluencia, y el marcador "m", es 1 en ambos casos, como se muestra en la figura V-14.

Figura V-14. Marcador m y momentos en los extremos de la viga.

En tercer lugar, utilizando el vector de momentos de la viga, se estiman los giros elástico, los giros plásticos y la matriz de flexibilidad plástica f_p para la viga, como se muestra en la figura V-15. Como no se han sobrepasado los momentos plásticos, esta matriz es una matriz de distinta de cero, cuyos valores se muestran a continuación:

$$f_p = \begin{bmatrix} 0.0005625 & 0\\ 0 & 0.0005625 \end{bmatrix}$$
(5.8)

Figura V-15. Matriz de flexibilidad plástica de la viga.

En cuarto lugar, se actualiza la matriz de flexibilidad f de la viga sumando las matrices de flexibilidad plásticas (f_p) y la matriz de flexibilidad elástica (f_e). Se estima el vector de giros residuales v_r y para este caso, la norma de este vector (norma de v_r igual a 0.0033011) es mayor que la tolerancia pre-establecida, como se muestra en la figura V-16.

Figura V-16. Residual de desplazamientos y norma del residual de desplazamientos.

Como la norma del vector de giros residuales es mayor a la tolerancia, se requieren iteraciones de Newton-Rapshon para la determinación del estado de la viga. Para la nueva iteración, se asigna el vector de giros residuales mostrado en la figura V-17.

Figura V-17. Asignación del nuevo vector residual de desplazamientos.

Con el giro residual, y la matriz de flexibilidad tangente de la viga se estiman el incremento de momentos. La estimación de los momentos para esta segunda iteración de la viga se muestra en la figura V-18.

También se verifican los marcadores, y en este caso hay fluencia en el momento derecho de la viga.

Figura V-18. Estimación de momentos en los extremos de la viga (primera iteración).

Con la nueva estimación del vector de momentos, se actualiza la matriz de flexibilidad plástica de la viga y se calculan los giros plásticos de la viga, mostrados en la figura V-19.

Figura V-19. Estimación de momentos en los extremos de la viga (segunda iteración).

Se actualiza la matriz de flexibilidad tangente y se estima la matriz de rigidez de la viga. Con el vector de momentos de la segunda iteración, se estiman los giros elásticos y plásticos de la viga y se estima el vector de giros residuales. Como la norma de este vector es 0.0001227, se debe seguir iterando. Con el vector de giros residuales se obtiene el incremento de momentos de momentos y se actualizan los momentos en los extremos de la viga. Se obtienen los giros elásticos y plásticos de la viga y se estima el nuevo residual de desplazamientos. En esta tercera iteración se logra convergencia y se determina el estado de la viga Los cálculos de la última iteración de la viga se muestran en la figura V-20.

Figura V-20. Iteración final de la viga.

Conocido el estado de la viga, se procede con la solución de la segunda iteración del pushover la estructura. Con la matriz de rigidez tangente de la viga se procede a ensamblarla en la matriz de rigidez tangente global de la estructura. Los elementos en amarillo en la figura V-21 corresponden a los que varían de la matriz de rigidez de la estructura debido a la plastificación de los extremos de la viga.

Figura V-21. Actualización de la matriz de rigidez tangente de la estructura.

Se obtienen las fuerzas resistentes de las columnas y viga de la estructura y se ensamblan el vector global de fuerzas resistentes, como se muestra en la figura V-22. Para esta segunda iteración de la estructura, la norma del vector residual de fuerzas es mayor que la tolerancia dada, por lo tanto se requiere una tercera iteración de Newton Rapshon en la estructura. La estimación de este residual se muestra en la figura V-23.

Figura V-22. Calculo de las fuerzas resistentes de la estructura.

fs(kN)	R=p-fs (kN)	Matriz de rigidez final iteracion			du(m)	u (m, rad)
90	0	32921.8107	19753.0864	39506.1728	0.00027521	0.005837
2.726543705	-2.726543705	19753.0864	65598.6219	826.873385	-0.0001223	-0.001379
5.45308741	-5.5	39506.1728	826.873385	96468.5616	-0.0002	-0.001896
Norm R	6.096737068					

Figura V-23. Calculo de la norma del residual de fuerzas y diferencial de

desplazamientos.

Al igual que la iteración anterior de la solución del análisis no lineal de la estructura, con los nuevos desplazamientos de la estructura, se debe estimar el estado de la viga y las columnas, hasta encontrar que la norma del vector de fuerzas residual sea menor a la tolerancia. Se realiza una nueva iteración de la estructura, y para este caso la norma del vector residual es menor que la tolerancia. La solución final para el paso del pushover asociado al multiplicador de carga λ =9 se muestra en la figura V-24.

Figura V-24. Iteración final de la estructura para el paso λ =9.

El procedimiento anterior se repite para cada multiplicador de carga λ restante, para el caso particular de este ejemplo, para λ =10 hasta encontrar que el residual de fuerzas R sea menor

que la tolerancia pre-establecida, en la última iteración de cada paso λ del análisis estático no lineal.

El detalle de los cálculos realizados en Excel para la estructura con rótulas elasto-plásticas se muestra en el Anexo A. El detalle para la estructura con rótulas con endurecimiento se muestra en el Anexo B.

V.2 Resultados Excel

Los resultados obtenidos mediante el uso de Excel, se pueden observar en los gráficos de la figura V-25 (rótulas elastoplásticas), figura V-26 (rótulas con endurecimiento). Los valores obtenidos se resumen en la tabla V-1.

Figura V-25. Curva fuerza aplicada v/s desplazamiento de techo, rótulas elasto-plásticas.

Figura V-26. Curva fuerza aplicada v/s desplazamiento de techo, rótulas con

endurecimiento.

Corto Pasal (KNI)	Desplazamiento u (m)	Desplazamiento u (m)	
Corte Basar (KN)	Excel, rótulas con elastoplásticas	Excel, rótulas con endurecimiento	
10	0.000618	0.000618	
20	0.001236	0.001236	
30	0.001854	0.001854	
40	0.002472	0.002472	
50	0.00309	0.00309	
60	0.003708	0.003708	
70	0.004326	0.004326	
80	0.004944	0.004944	
90	0.005898	0.005837	
100	0.007113	0.006969	

Tabla V-1. Tabla resultados pushover obtenidos con Excel.

Para el caso con rótulas elastoplásticas, la primera rótula plastifica se identifica para un corte basal de 90 (kN), en la rótula del extremo derecho de la viga, para un desplazamiento de 0.005898 (m). Posteriormente, para una fuerza lateral aplicada de 100 (kN), la segunda rótula alcanza la plastificación para un desplazamiento de 0.007113 (m). Para el caso con rótulas elasto-plásticas, se tiene una rigidez lateral inicial de 16181.907 (kN/m), la cual se reduce a 10475.122 (kN/m) para el estado asociado a la primera plastificación, lo que significa una reducción de 35.26%. Finalmente, para un corte basal de 100 (kN), la matriz de rigidez lateral tangente corresponde a 8230.452 (kN/m), presentando una reducción de 49.13% con respecto a la rigidez lateral inicial de la estructura y una reducción del 21.42%, con respecto a la rigidez lateral tangente del paso anterior.

Para el caso con rótulas plástica con endurecimiento, la primera rótula plastifica se identifica para un corte basal de 90 (kN), en la rótula del extremo derecho de la viga para un desplazamiento de 0.005837 (m). Posteriormente, para una fuerza lateral aplicada de 100 (kN), la segunda rótula alcanza la plastificación, con un desplazamiento de 0.006969 (m). La rigidez lateral inicial es de 16181.907 (kN/m). Esta rigidez se reduce a 10996.599 (kN/m) después de la primera plastificación, lo que significa una reducción de 32.043%. Finalmente, para un corte basal de 100 (kN), la rigidez lateral es 8803.045 (kN/m), presentando una reducción de 45.49% con respecto a la rigidez lateral inicial de la estructura y una reducción del 19.947%, con respecto a la rigidez lateral del estado anterior.

V.3 Comparación de Resultados entre Excel y SAP 2000

En esta sección se comparan los resultados del análisis realizado en SAP2000 y Excel. Para la estructura con rótulas perfectamente elasto-plásticas, la comparación del desplazamiento de techo se muestra en la figura V-27 y tabla V-2. Se puede observar que para la estructura con rótulas elastoplásticas los desplazamientos de la estructura son idénticos.

Para la estructura con rótulas con endurecimiento de 5% en los extremos de la viga, la comparación de los desplazamientos de techo se muestra en la figura V-28 y tabla V-3. Se puede observar que para la estructura con rótulas con endurecimiento de 5%, se encuentran diferencias del orden de 0.3% en la estimación de los desplazamientos.

Figura V-27. Curva fuerza aplicada v/s desplazamiento de techo, rótulas elasto-plásticas.

Corte Basal (kN)	Desplazamie	Diferencia (%)	
Corte Dasar (KN)	Excel	SAP 2000	Diferencia (76)
10	0.000618	0.000618	0.00%
20	0.001236	0.001236	0.00%
30	0.001854	0.001854	0.00%
40	0.002472	0.002472	0.00%
50	0.003090	0.003090	0.00%
60	0.003708	0.003708	0.00%
70	0.004326	0.004326	0.00%
80	0.004944	0.004944	0.00%
90	0.005898	0.005898	0.00%
100	0.007113	0.007113	0.00%

elasto-plásticas.

Tabla V-2. Comparación del desplazamiento de techo entre Excel y SAP 2000, rótulas

Figura V-28. Curva fuerza aplicada v/s desplazamiento de techo, rótulas con

endurecimiento.

Corte Basal (kN)	Desplazamiento u (m)		Diferencia (9/)
	Excel	SAP 2000	Diferencia (%)
10	0.000617974	0.000618	0.00%
20	0.001235948	0.001236	0.00%
30	0.001853922	0.001854	0.00%
40	0.002471897	0.002472	0.00%
50	0.003089871	0.00309	0.00%
60	0.003707845	0.003708	0.00%
70	0.004325819	0.004326	0.00%
80	0.004943793	0.004944	0.00%
90	0.005836976	0.005853	0.27%
100	0.006969177	0.00699	0.30%

Tabla V-3. Comparación del desplazamiento de techo entre Excel y SAP 2000, rótulas con

end	urecimiento.

Adicionalmente, se puede observar que las curvas de corte basal v/s desplazamiento de techo, para ambos tipos de rótulas, presentan sólo un quiebre claro en su comportamiento (asociado a la fluencia de la rótula plástica del extremo derecho de la viga superior). Como la estructura tiene dos rótulas se esperaría ver dos quiebres en la curva fuerza desplazamientos. Esta diferencia no se observa en los gráficos porque la estructura presenta una leve disminución de rigidez al momento de fluencia de la segunda rótula (disminución de rigidez lateral del orden de un 20%, entre ambos estados).

VI CONCLUSIONES Y COMENTARIOS

En esta tesis se implementó en Excel el algoritmo para calcular el pushover de un marco de 2 columnas y un vano. Para estimar los desplazamientos de una estructura, se requiere hacer iteraciones anidadas. Por un lado, el pushover general de la estructura requiere iteraciones de Newton-Raphson, y por otro lado, la determinación del estado de la viga también requiere de iteraciones Newton-Raphson. Por último, es importante mencionar que formulación utilizada en este trabajo funciona exclusivamente para cargas monotónicas. Para realizar un Pushover Cíclico es necesario definir las reglas histeréticas para el elemento viga con rótulas plásticas. Esta validación, también se propone para futuras investigaciones.

En este estudio se validó el análisis estático no lineal del programa SAP 2000, específicamente para elementos viga con rótulas concentradas. Esta validación se realizó para un marco de dos columnas y una viga, en que la viga se modeló con rótulas plásticas concentradas en sus extremos. Los desplazamientos de techo calculados analíticamente utilizando Excel son exactamente iguales a los obtenidos con SAP 2000 para el caso con rótulas con comportamiento elasto-plástico perfecto. Para el caso con rótulas plásticas con endurecimiento, se obtuvo una diferencia del orden de 0.3%.

El error obtenido se puede atribuir al manejo de decimales, ya que la solución en Excel podría emplear un número distinto de decimales a la empleada en SAP2000. Cabe agregar que el giro de fluencia toma importancia al momento de determina el estado de la viga en el programa SAP 2000, para estimar si la viga entró en el rango plástico. El giro de fluencia es redondeado en SAP 2000 y no así en Excel, que se considera con un mayor número de decimales. Es importante mencionar que no es posible saber el número de iteraciones que realiza SAP 2000 para llegar a la solución de cada paso del pushover.

La forma de la curva que se obtiene del análisis estático no lineal depende de la discretización asociada al factor de carga λ , es decir, al incremento de carga que se utilice para la solución. Esto toma importancia al momento de identificar gráficamente la fluencia de la estructura y obtener los gráficos de momento – rotación de las vigas, las cuales toman importancia en los criterios de desempeño sísmico bajo un análisis sísmico basado en el desempeño (FEMA, 2000).

Como comentario es válido señalar que la planilla Excel elaborada funciona correctamente para el caso con rótulas bilineales (perfectamente elasto-plásticas y con endurecimiento de 5%). Sin embargo, para rótulas con distintas curvas esqueleto (por ejemplo las mostradas en la norma FEMA 356), se debe validar el funcionamiento de estas curvas mediante una formulación por tramos para la no linealidad, separadas entre los distintos sectores de las curvas ya mencionadas. También se debe cambiar la formulación del Excel, para que funcione con lo que se llama *Displacement Controlled Pushover*, de esta forma se pueda trabajar con rigideces tangentes negativas. Lo anterior se reserva para futuras líneas de investigación.

VII BIBLIOGRAFIA

CHOPRA. ANIL K. (2012) *Dynamics of Structures: Theory and Applications to Earthquake Engineering*, Prentice Hall, New York.

COMPUTERS AND STRUCTURES, INC. (2011), SAP 2000 v.15.0.0, California.

FEDERAL EMERGENCY MANAGEMENT AGENCY (2000), Prestandard And Commentary for the Seismic Rehabilitation of Buildings, FEMA 356, Washington D.C.

COMPUTERS AND STRUCTURES INC. (2009), SAP2000® Basic Analysis Reference Manual Linear and Nonlinear Static and Dynamic Analysis and Design of Three-Dimensional Structures, California.

BOZORGNIA Y. y BERTERO V. (2004), *Earthquake engineering, From Engineering* Seismology to Performance-Based Engineering, CRC Press, London.

HUBE, M. (2013) Clase 3, Diseño Sismorresistente Avanzado, IEG 3510. *Departamento de Ingeniería Estructural y Geotécnica*, Pontificia Universidad Católica de Chile.
VIII A N E X O S

IX ANEXO A: EXCEL PARA RÓTULAS ELASTOPLÁSTICAS

Figura IX-1. Propiedades estructura, rótulas elastoplásticas.

Paso $\lambda = 1$

	Lambda:	1													
	P(N)	u (m, rad)				ki(kN/m)		fs col ing (kNI)	fa col dor. (kNI)	fe vigo (kNI)	fs(kN)	R=p-fs (kN)	Matriz o	de rigidez final i	teracion
	10.0	0.000000	q (kN-m)	vp (rad)	32921.8107	19753.08642	39506.1728	15 COI 12Q. (KIN)	IS COLUEL. (KIN)	IS VIga (KIN)	0	10	32921.8107	19753.08642	39506.17284
	0.0	0.000000	0	0	19753.08642	71111.11111	11851.8519	0	0	C	0 0	0	19753.08642	71111.11111	11851.85185
	0.0	0.000000	0	0	39506.17284	11851.85185	118518.519	0	0	C	0 0	0.0	39506.17284	11851.85185	118518.5185
Corte Basal	10.0										Norm R	10			
										_					-
	vr	f	e	q (kN-m)	vp (rad)	Dq (kN-m)	q=q+Dq	mr	ve						
	0	0.00005625	-0.000028125	0	0	0	0	0	0						
n 1	0	-2.8125E-05	0.00005625	0	0	0	0	0	0						
acic															
lter	q-Mp	f	р	vp	f=fe	+fp	K_v	iga=inv(f)	vr						
	0	0	0	0	0.00005625	-0.000028125	23703.7037	11851.85185	0.0						
	0	0	0	0	-0.000028125	0.00005625	11851.8519	23703.7037	0.0						
								Norm vr	0.0						

Figura IX-2. Resultados para λ =1, primera iteración, rótulas elastoplásticas.

du(m)	u (m, rad)				ki(kN/m)		fc col iza (kN)	fc col dor (kN)	fe vigo (kN)	fs(kN)	R=p-fs (kN)	Matriz de	rigidez final	iteracion
0.000617974	0.000618	q (kN-m)	vp (rad)	32921.8107	19753.08642	39506.17284	13 COT 12Q. (KN)	IS COLUEL. (KIN)	is viga (kiv)	10	0	32921.8107	19753.0864	39506.1728
-0.000139655	-0.000140	-5.586206897	0	19753.08642	71111.11111	11851.85185	4.022988506	5.977011494	-5.586206897	0	0	19753.0864	71111.1111	11851.8519
-0.0002	-0.000192	-6.206896552	0	39506.17284	11851.85185	118518.5185	5.586206897	6.206896552	-6.206896552	0	0.0	39506.1728	11851.8519	118518.519
										Norm R	0			
	vr	fe		q (kN-m)	vp (rad)	Dq (kN-m)	q=q+Dq	mr	ve					
	vr -0.000139655	fe 0.00005625	-0.000028125	q (kN-m) 0	vp (rad) 0	Dq (kN-m) -5.586206897	q=q+Dq -5.586206897	mr 0	ve -0.000139655					
on 1	vr -0.000139655 -0.000192026	fe 0.00005625 -0.000028125	-0.000028125 0.00005625	q (kN-m) 0 0	vp (rad) 0 0	Dq (kN-m) -5.586206897 -6.206896552	q=q+Dq -5.586206897 -6.206896552	mr 0	ve -0.000139655 -0.000192026					
acion 1	vr -0.000139655 -0.000192026	fe 0.00005625 -0.000028125	-0.000028125 0.00005625	q (kN-m) 0 0	vp (rad) 0 0	Dq (kN-m) -5.586206897 -6.206896552	q=q+Dq -5.586206897 -6.206896552	mr 0 0	ve -0.000139655 -0.000192026					
iteracion 1	vr -0.000139655 -0.000192026 q-Mp	fe 0.00005625 -0.000028125 fp	-0.000028125 0.00005625	q (kN-m) 0 0	vp (rad) 0 0 f=fe	Dq (kN-m) -5.586206897 -6.206896552 e+fp	q=q+Dq -5.586206897 -6.206896552 K_viga	mr 0 0 =inv(f)	ve -0.000139655 -0.000192026 vr					

Figura IX-3. Resultados para λ =1, segunda iteración, rótulas elastoplásticas.

11851.85185

23703.703

Norm vr

0.0

0.00005625

-0.000028125

Paso $\lambda=2$

43.79310345

	Lambda:	2													
	P(N)	u (m, rad)				ki(kN/m)		fs col ing (kN)	fs col dor. (kN)	favigo (kNI)	fs(kN)	R=p-fs (kN)	Matriz (de rigidez final it	teracion
	20.0	0.000618	q (kN-m)	vp (rad)	32921.8107	19753.08642	39506.1728	15 COI 12Q. (KIN)	is col del. (kiv)	IS VIGA (KIN)	10	10	32921.8107	19753.08642	39506.17284
	0.0	-0.000140	-5.586206897	0	19753.08642	71111.11111	11851.8519	4.022988506	5.977011494	-5.586206897	0	0	19753.08642	71111.11111	11851.85185
	0.0	-0.000192	-6.206896552	0	39506.17284	11851.85185	118518.519	5.586206897	6.206896552	-6.206896552	0	0.0	39506.17284	11851.85185	118518.5185
Corte Basal	20.0										Norm R	10			
	vr	f	e	q (kN-m)	vp (rad)	Dq (kN-m)	q=q+Dq	mr	ve						
	-0.000139655	0.00005625	-0.000028125	0	0	-5.586206897	-5.5862069	0	-0.000139655						
n 1	-0.000192026	-2.8125E-05	0.00005625	0	0	-6.206896552	-6.2068966	0	-0.000192026						
acio															
Iter	q-Mp	f	р	vp	f=fe	+fp	K_vi	ga=inv(f)	vr						
	44.4137931	0	0	0	0.00005625	-0.000028125	23703.7037	11851.85185	0.0						
	43.79310345	0	0	0	-0.000028125	0.00005625	11851.8519	23703.7037	0.0						
								Norm vr	0.0						

Figura IX-4. Resultados para λ =2, primera iteración, rótulas elastoplásticas.

du(m)	u (m, rad)				ki(kN/m)		fs col izq. (kN)	fs col der. (kN)	fs viga (kN)	fs(kN)	R=p-fs (kN)	Matriz de	rigidez final	iteracion
0.000617974	0.001236	q (kN-m)	vp (rad)	32921.8107	19753.08642	39506.17284				20	0	32921.8107	19753.0864	39506.1728
-0.000139655	-0.000279	-11.17241379	0	19753.08642	71111.11111	11851.85185	8.045977011	11.95402299	-11.17241379	0	0	19753.0864	71111.1111	11851.8519
-0.0002	-0.000384	-12.4137931	0	39506.17284	11851.85185	118518.5185	11.17241379	12.4137931	-12.4137931	0	0.0	39506.1728	11851.8519	118518.519
										Norm R	0			
	vr	fe		q (kN-m)	vp (rad)	Dq (kN-m)	q=q+Dq	mr	ve					
	-0.00027931	0.00005625	-0.000028125	0	0	-11.17241379	-11.17241379	0	-0.00027931					
n 1	-0.000384052	-0.000028125	0.00005625	0	0	-12.4137931	-12.4137931	0	-0.000384052					
acic														
ter	q-Mp	fp		vp	f=fe	e+fp	K_viga	=inv(f)	vr					
_	38.82758621	0	0	0	0.00005625	-0.000028125	23703.7037	11851.85185	0.0					
	37.5862069	0	0	0	-0.000028125	0.00005625	11851.85185	23703.7037	0.0					
								Norm vr	0.0					

Figura IX-5. Resultados para λ =2, segunda iteración, rótulas elastoplásticas.

Paso $\lambda=3$

			_												
	Lambda:	3													
	P(N)	u (m, rad)				ki(kN/m)		fc col izg (kN)	fc col dor (kN)	fe vigo (kNI)	fs(kN)	R=p-fs (kN)	Matriz	de rigidez final i	teracion
	30.0	0.001236	q (kN-m)	vp (rad)	32921.8107	19753.08642	39506.1728	15 COI 12Q. (KN)	is coluer. (kiv)	IS VIGA (KIN)	20	10	32921.8107	19753.08642	39506.17284
	0.0	-0.000279	-11.17241379	0	19753.08642	71111.11111	11851.8519	8.045977011	11.95402299	-11.17241379	0	0	19753.08642	71111.11111	11851.85185
	0.0	-0.000384	-12.4137931	0	39506.17284	11851.85185	118518.519	11.17241379	12.4137931	-12.4137931	0	0.0	39506.17284	11851.85185	118518.5185
Corte Basal	30.0										Norm R	10			
	vr	f	e	q (kN-m)	vp (rad)	Dq (kN-m)	q=q+Dq	mr	ve						
_	-0.00027931	0.00005625	-0.000028125	0	0	-11.17241379	-11.172414	0	-0.00027931						
t nc	-0.000384052	-2.8125E-05	0.00005625	0	0	-12.4137931	-12.413793	0	-0.000384052						
acic															
Iter	q-Mp	f	p	vp	f=fe	+fp	K_vi	ga=inv(f)	vr						
	38.82758621	0	0	0	0.00005625	-0.000028125	23703.7037	11851.85185	0.0						
	37.5862069	0	0	0	-0.000028125	0.00005625	11851.8519	23703.7037	0.0						
								Norm vr	0.0						

Figura IX-6. Resultados para λ =3, primera iteración, rótulas elastoplásticas.

du(m)	u (m, rad)				ki(kN/m)		fs col izq. (kN)	fs col der. (kN)	fs viga (kN)	fs(kN)	R=p-fs (kN)	Matriz de	rigidez final	iteracion
0.000617974	0.001854	q (kN-m)	vp (rad)	32921.8107	19753.08642	39506.17284				30	0	32921.8107	19753.0864	39506.1728
-0.000139655	-0.000419	-16.75862069	0	19753.08642	71111.11111	11851.85185	12.06896552	17.93103448	-16.75862069	0	0	19753.0864	71111.1111	11851.8519
-0.0002	-0.000576	-18.62068966	0	39506.17284	11851.85185	118518.5185	16.75862069	18.62068966	-18.62068966	0	0.0	39506.1728	11851.8519	118518.519
										Norm R	0			
										_		-		
	vr	fe		q (kN-m)	vp (rad)	Dq (kN-m)	q=q+Dq	mr	ve					
	-0.000418966	0.00005625	-0.000028125	0	0	-16.75862069	-16.75862069	0	-0.000418966					
n 1	-0.000576078	-0.000028125	0.00005625	0	0	-18.62068966	-18.62068966	0	-0.000576078					
acio										-				
ten	q-Mp	fp		vp	f=fe	e+fp	K_viga	=inv(f)	vr					
_	33.24137931	0	0	0	0.00005625	-0.000028125	23703.7037	11851.85185	0.0					
	31.37931034	0	0	0	-0.000028125	0.00005625	11851.85185	23703.7037	0.0					

Figura IX-7. Resultados para λ =3, segunda iteración, rótulas elastoplásticas.

23703.703 Norm vr

0.0

Paso $\lambda = 4$

	Lambda:	4													
	P(N)	u (m, rad)				ki(kN/m)		fc col izg (kN)	fc col dor (kN)	fe vigo (kN)	fs(kN)	R=p-fs (kN)	Matriz	de rigidez final i	teracion
	40.0	0.001854	q (kN-m)	vp (rad)	32921.8107	19753.08642	39506.1728	15 COI 12Q. (KN)	is coluer. (kiv)	IS VIGA (KIV)	30	10	32921.8107	19753.08642	39506.17284
	0.0	-0.000419	-16.75862069	0	19753.08642	71111.11111	11851.8519	12.06896552	17.93103448	-16.75862069	0	0	19753.08642	71111.11111	11851.85185
	0.0	-0.000576	-18.62068966	0	39506.17284	11851.85185	118518.519	16.75862069	18.62068966	-18.62068966	0	0.0	39506.17284	11851.85185	118518.5185
Corte Basal	40.0										Norm R	10			
	vr	f	e	q (kN-m)	vp (rad)	Dq (kN-m)	q=q+Dq	mr	ve						1
	-0.000418966	0.00005625	-0.000028125	0	0	-16.75862069	-16.758621	0	-0.000418966						
n 1	-0.000576078	-2.8125E-05	0.00005625	0	0	-18.62068966	-18.62069	0	-0.000576078						
acic															
ter	q-Mp	f	p	vp	f=fe	+fp	K_vi	ga=inv(f)	vr						
_	33.24137931	0	0	0	0.00005625	-0.000028125	23703.7037	11851.85185	0.0						
	31.37931034	0	0	0	-0.000028125	0.00005625	11851.8519	23703.7037	0.0						
								Norm vr	0.0						

Figura IX-8. Resultados para λ =4, primera iteración, rótulas elastoplásticas.

du(m)	u (m, rad)				ki(kN/m)		fs col izq. (kN)	fs col der. (kN)	fs viga (kN)	fs(kN)	R=p-fs (kN)	Matriz de	rigidez final	iteracion
0.000617974	0.002472	q (kN-m)	vp (rad)	32921.8107	19753.08642	39506.17284				40	0	32921.8107	19753.0864	39506.1728
-0.000139655	-0.000559	-22.34482759	0	19753.08642	71111.11111	11851.85185	16.09195402	23.90804598	-22.34482759	0	0	19753.0864	71111.1111	11851.8519
-0.0002	-0.000768	-24.82758621	0	39506.17284	11851.85185	118518.5185	22.34482759	24.82758621	-24.82758621	0	0.0	39506.1728	11851.8519	118518.519
										Norm R	0			
	vr	fe		q (kN-m)	vp (rad)	Dq (kN-m)	q=q+Dq	mr	ve					
	-0.000558621	0.00005625	-0.000028125	0	0	-22.34482759	-22.34482759	0	-0.000558621					
n 1	-0.000768103	-0.000028125	0.00005625	0	0	-24.82758621	-24.82758621	0	-0.000768103					
acio										-				
ten	q-Mp	fp		vp	f=fe	e+fp	K_viga	=inv(f)	vr					
_	27.65517241	0	0	0	0.00005625	-0.000028125	23703.7037	11851.85185	0.0					
	25.17241379	0	0	0	-0.000028125	0.00005625	11851.85185	23703.7037	0.0					

Norm vr

0.0

Figura IX-9. Resultados para λ =4, segunda iteración, rótulas elastoplásticas.

Paso $\lambda=5$

	Lambda:	5													
	P(N)	u (m, rad)				ki(kN/m)		fs col ing (kN)	fo col dor. (kNi)	fourigo (kNI)	fs(kN)	R=p-fs (kN)	Matriz	de rigidez final i	teracion
	50.0	0.002472	q (kN-m)	vp (rad)	32921.8107	19753.08642	39506.1728	IS COLIZY. (KIN)	is col der. (kiv)	IS VIGA (KIN)	40	10	32921.8107	19753.08642	39506.17284
	0.0	-0.000559	-22.34482759	0	19753.08642	71111.11111	11851.8519	16.09195402	23.90804598	-22.34482759	0	0	19753.08642	71111.11111	11851.85185
	0.0	-0.000768	-24.82758621	0	39506.17284	11851.85185	118518.519	22.34482759	24.82758621	-24.82758621	0	0.0	39506.17284	11851.85185	118518.5185
Corte Basal	50.0										Norm R	10			
	vr	f	e	q (kN-m)	vp (rad)	Dq (kN-m)	q=q+Dq	mr	ve						
	-0.000558621	0.00005625	-0.000028125	0	0	-22.34482759	-22.344828	0	-0.000558621						
n 1	-0.000768103	-2.8125E-05	0.00005625	0	0	-24.82758621	-24.827586	0	-0.000768103						
acic															
Iter	q-Mp	f	р	vp	f=fe	+fp	K_vi	ga=inv(f)	vr						
	27.65517241	0	0	0	0.00005625	-0.000028125	23703.7037	11851.85185	0.0						
	25.17241379	0	0	0	-0.000028125	0.00005625	11851.8519	23703.7037	0.0						
								Norm vr	0.0						

Figura IX-10. Resultados para λ =5, primera iteración, rótulas elastoplásticas.

du(m)	u (m, rad)				ki(kN/m)		fs col izq. (kN)	fs col der. (kN)	fs viga (kN)	fs(kN)	R=p-fs (kN)	Matriz de	e rigidez fina	iteracion
0.000617974	0.003090	q (kN-m)	vp (rad)	32921.8107	19753.08642	39506.17284				50	0	32921.8107	19753.0864	39506.1728
-0.000139655	-0.000698	-27.93103448	0	19753.08642	71111.11111	11851.85185	20.11494253	29.88505747	-27.93103448	0	0	19753.0864	71111.1111	11851.8519
-0.0002	-0.000960	-31.03448276	0	39506.17284	11851.85185	118518.5185	27.93103448	31.03448276	-31.03448276	0	0.0	39506.1728	11851.8519	118518.519
										Norm R	0			
	vr	fe		q (kN-m)	vp (rad)	Dq (kN-m)	q=q+Dq	mr	ve					
	-0.000698276	0.00005625	-0.000028125	0	0	-27.93103448	-27.93103448	0	-0.000698276					
n 1	-0.000960129	-0.000028125	0.00005625	0	0	-31.03448276	-31.03448276	0	-0.000960129					
acic														
ter	q-Mp	fp		vp	f=fe	e+fp	K_viga	=inv(f)	vr					
_	22.06896552	0	0	0	0.00005625	-0.000028125	23703.7037	11851.85185	0.0					
	18.96551724	0	0	0	-0.000028125	0.00005625	11851.85185	23703.7037	0.0					
								Norm vr	0.0					

Figura IX-11. Resultados para λ =5, segunda iteración, rótulas elastoplásticas.

Paso λ=6

	Lambda:	6													
	P(N)	u (m, rad)				ki(kN/m)		fs col ize (kNI)	fo col dor. /kNI)	fe vigo (kNI)	fs(kN)	R=p-fs (kN)	Matriz d	de rigidez final it	teracion
	60.0	0.003090	q (kN-m)	vp (rad)	32921.8107	19753.08642	39506.1728	TS COLIZY. (KIN)	is coluer. (kiv)	IS VIGA (KIN)	50	10	32921.8107	19753.08642	39506.17284
	0.0	-0.000698	-27.93103448	0	19753.08642	71111.11111	11851.8519	20.11494253	29.88505747	-27.93103448	0	0	19753.08642	71111.11111	11851.85185
	0.0	-0.000960	-31.03448276	0	39506.17284	11851.85185	118518.519	27.93103448	31.03448276	-31.03448276	0	0.0	39506.17284	11851.85185	118518.5185
Corte Basal	60.0										Norm R	10			
	vr	f	e	q (kN-m)	vp (rad)	Dq (kN-m)	q=q+Dq	mr	ve						
	-0.000698276	0.00005625	-0.000028125	0	0	-27.93103448	-27.931034	0	-0.000698276						
t nc	-0.000960129	-2.8125E-05	0.00005625	0	0	-31.03448276	-31.034483	0	-0.000960129						
acio															
lter	q-Mp	f	р	vp	f=fe	+fp	K_vi	ga=inv(f)	vr						
	22.06896552	0	0	0	0.00005625	-0.000028125	23703.7037	11851.85185	0.0						
	18.96551724	0	0	0	-0.000028125	0.00005625	11851.8519	23703.7037	0.0						
								Norm vr	0.0						

Figura IX-12. Resultados para λ =6, primera iteración, rótulas elastoplásticas.

du(m)	u (m, rad)				ki(kN/m) fs c			fs col der. (kN)	fs viga (kN)	fs(kN)	R=p-fs (kN)	Matriz de	rigidez fina	iteracion
0.000617974	0.003708	q (kN-m)	vp (rad)	32921.8107	19753.08642	39506.17284				60	0	32921.8107	19753.0864	39506.1728
-0.000139655	-0.000838	-33.51724138	0	19753.08642	71111.11111	11851.85185	24.13793103	35.86206897	-33.51724138	0	0	19753.0864	71111.1111	11851.8519
-0.0002	-0.001152	-37.24137931	0	39506.17284	11851.85185	118518.5185	33.51724138	37.24137931	-37.24137931	0	0.0	39506.1728	11851.8519	118518.519
										Norm R	0			
										_				
	vr	fe		q (kN-m)	vp (rad)	Dq (kN-m)	q=q+Dq	mr	ve					
	-0.000837931	0.00005625	-0.000028125	0	0	-33.51724138	-33.51724138	0	-0.000837931					
n 1	-0.001152155	-0.000028125	0.00005625	0	0	-37.24137931	-37.24137931	0	-0.001152155					
acic										-				
ter	q-Mp	fp		vp	f=fe	e+fp	K_viga	=inv(f)	vr					
_	16.48275862	0	0	0	0.00005625	-0.000028125	23703.7037	11851.85185	0.0					
	12.75862069	0	0	0	-0.000028125	0.00005625	11851.85185	23703.7037	0.0					
								Norm vr	0.0					

Figura IX-13. Resultados para λ =6, segunda iteración, rótulas elastoplásticas.

Paso $\lambda = 7$

	Lambda:	7													
	P(N)	u (m, rad)				ki(kN/m)		fs col izg (kN)	fs col dos (kNI)	favigo (kNI)	fs(kN)	R=p-fs (kN)	Matriz	de rigidez final i	teracion
	70.0	0.003708	q (kN-m)	vp (rad)	32921.8107	19753.08642	39506.1728	IS COLIZY. (KIN)	IS COLUEL. (KIN)	IS VIGA (KIN)	60	10	32921.8107	19753.08642	39506.17284
	0.0	-0.000838	-33.51724138	0	19753.08642	71111.11111	11851.8519	24.13793103	35.86206897	-33.51724138	0	0	19753.08642	71111.11111	11851.85185
	0.0	-0.001152	-37.24137931	0	39506.17284	11851.85185	118518.519	33.51724138	37.24137931	-37.24137931	0	0.0	39506.17284	11851.85185	118518.5185
Corte Basal	70.0										Norm R	10			
	vr	f	e	q (kN-m)	vp (rad)	Dq (kN-m)	q=q+Dq	mr	ve						
_	-0.000837931	0.00005625	-0.000028125	0	0	-33.51724138	-33.517241	0	-0.000837931						
n 1	-0.001152155	-2.8125E-05	0.00005625	0	0	-37.24137931	-37.241379	0	-0.001152155						
acic															
Iter	q-Mp	f	р	vp	f=fe	+fp	K_vi	ga=inv(f)	vr						
	16.48275862	0	0	0	0.00005625	-0.000028125	23703.7037	11851.85185	0.0						
	12.75862069	0	0	0	-0.000028125	0.00005625	11851.8519	23703.7037	0.0						
								Norm vr	0.0						

Figura IX-14. Resultados para λ =7, primera iteración, rótulas elastoplásticas.

du(m)	u (m, rad)				ki(kN/m)		fs col izq. (kN)	fs col der. (kN)	fs viga (kN)	fs(kN)	R=p-fs (kN)	Matriz de	e rigidez final	iteracion
0.000617974	0.004326	q (kN-m)	vp (rad)	32921.8107	19753.08642	39506.17284				70	0	32921.8107	19753.0864	39506.1728
-0.000139655	-0.000978	-39.10344828	0	19753.08642	71111.11111	11851.85185	28.16091954	41.83908046	-39.10344828	0	0	19753.0864	71111.1111	11851.8519
-0.0002	-0.001344	-43.44827586	0	39506.17284	11851.85185	118518.5185	39.10344828	43.44827586	-43.44827586	0	0.0	39506.1728	11851.8519	118518.519
										Norm R	0			
	vr	fe		q (kN-m)	vp (rad)	Dq (kN-m)	q=q+Dq	mr	ve					
_	-0.000977586	0.00005625	-0.000028125	0	0	-39.10344828	-39.10344828	0	-0.000977586					
n 1	-0.001344181	-0.000028125	0.00005625	0	0	-43.44827586	-43.44827586	0	-0.001344181					
acic														
Iter	q-Mp	fp		vp	f=f	e+fp	K_viga	=inv(f)	vr					
_	10.89655172	0	0	0	0.00005625	-0.000028125	23703.7037	11851.85185	0.0					
	6.551724138	0	0	0	-0.000028125	0.00005625	11851.85185	23703.7037	0.0					
								Norm vr	0.0					

Figura IX-15. Resultados para λ =7, segunda iteración, rótulas elastoplásticas.

Paso λ=8

	Lambda:	8													
	P(N)	u (m, rad)				ki(kN/m)		fc col iza (kNI)	fs col dor (kN)	fc vigo (kNI)	fs(kN)	R=p-fs (kN)	Matriz d	de rigidez final i	teracion
	80.0	0.004326	q (kN-m)	vp (rad)	32921.8107	19753.08642	39506.1728	15 COI 12Q. (KIN)	IS COLUEL. (KN)	IS VIGA (KIN)	70	10	32921.8107	19753.08642	39506.17284
	0.0	-0.000978	-39.10344828	0	19753.08642	71111.11111	11851.8519	28.16091954	41.83908046	-39.10344828	0	0	19753.08642	71111.11111	11851.85185
	0.0	-0.001344	-43.44827586	0	39506.17284	11851.85185	118518.519	39.10344828	43.44827586	-43.44827586	0	0.0	39506.17284	11851.85185	118518.5185
Corte Basal	80.0										Norm R	10			
	vr	f	e	q (kN-m)	vp (rad)	Dq (kN-m)	q=q+Dq	mr	ve						
	-0.000977586	0.00005625	-0.000028125	0	0	-39.10344828	-39.103448	0	-0.000977586						
n 1	-0.001344181	-2.8125E-05	0.00005625	0	0	-43.44827586	-43.448276	0	-0.001344181						
acic															
Iter	q-Mp	f	p	vp	f=fe	+fp	K_vi	iga=inv(f)	vr						
	10.89655172	0	0	0	0.00005625	-0.000028125	23703.7037	11851.85185	0.0						
	6.551724138	0	0	0	-0.000028125	0.00005625	11851.8519	23703.7037	0.0						
								Norm vr	0.0						-

Figura IX-16. Resultados para λ =8, primera iteración, rótulas elastoplásticas.

du(m)	u (m, rad)				ki(kN/m) f			fs col der. (kN)	fs viga (kN)	fs(kN)	R=p-fs (kN)	Matriz de	rigidez final	iteracion
0.000617974	0.004944	q (kN-m)	vp (rad)	32921.8107	19753.08642	39506.17284				80	0	32921.8107	19753.0864	39506.1728
-0.000139655	-0.001117	-44.68965517	0	19753.08642	71111.11111	11851.85185	32.18390805	47.81609195	-44.68965517	0	0	19753.0864	71111.1111	11851.8519
-0.0002	-0.001536	-49.65517241	0	39506.17284	11851.85185	118518.5185	44.68965517	49.65517241	-49.65517241	0	0.0	39506.1728	11851.8519	118518.519
										Norm R	0			
	vr	fe		q (kN-m)	vp (rad)	Dq (kN-m)	q=q+Dq	mr	ve					
	-0.001117241	0.00005625	-0.000028125	0	0	-44.68965517	-44.68965517	0	-0.001117241					
n 1	-0.001536207	-0.000028125	0.00005625	0	0	-49.65517241	-49.65517241	0	-0.001536207					
acic										-				
ter	q-Mp	fp		vp	f=f	e+fp	K_viga	=inv(f)	vr					
_	5.310344828	0	0	0	0.00005625	-0.000028125	23703.7037	11851.85185	0.0					
	0.344827586	0	0	0	-0.000028125	0.00005625	11851.85185	23703.7037	0.0					
								Norm vr	0.0					

Figura IX-17. Resultados para λ =8, segunda iteración, rótulas elastoplásticas.

Norm vr

Paso λ=9

	Lambda:	9	1												
	P(N)	u (m, rad)				ki(kN/m)		fr and inc. (1.81)	for and share (label)	fa	fs(kN)	R=p-fs (kN)	Matriz	de rigidez final it	teracion
	90.0	0.004944	q (kN-m)	vp (rad)	32921.8107	19753.08642	39506.1728	ts col izq. (kiv)	ts col der. (KN)	ts viga (kiv)	80	10	32921.8107	19753.08642	39506.17284
	0.0	-0.001117	-44.68965517	0	19753.08642	71111.11111	11851.8519	32.18390805	47.81609195	-44.68965517	0	0	19753.08642	71111.11111	11851.85185
	0.0	-0.001536	-49.65517241	0	39506.17284	11851.85185	118518.519	44.68965517	49.65517241	-49.65517241	0	0.0	39506.17284	11851.85185	118518.5185
Corte Basal	90.0										Norm R	10			
	vr	f	e	q (kN-m)	vp (rad)	Dq (kN-m)	q=q+Dq	mr	ve						
_	-0.001117241	0.00005625	-0.000028125	0	0	-44.68965517	-44.689655	0	-0.001117241						
n 1	-0.001536207	-2.8125E-05	0.00005625	0	0	-49.65517241	-49.655172	0	-0.001536207						
acic															
Iter	q-Mp	f	p	vp	f=fe	+fp	K_vi	ga=inv(f)	vr						
	5.310344828	0	0	0	0.00005625	-0.000028125	23703.7037	11851.85185	0.0						
	0.344827586	0	0	0	-0.000028125	0.00005625	11851.8519	23703.7037	0.0						
								Norm vr	0.000000						

Figura IX-18. Resultados para λ =9, primera iteración, rótulas elastoplásticas.

0.000617974 0.005562 q (kN-m) vp (rad) 32921.8107 19753.08642 39506.17284 90	0 32921.8107 19753.0864 39506.1728
-0.000139655 -0.001257 -47.34482763 0 19753.08642 65185.18527 0.000177778 36.20689655 53.79310345 -47.34482763 2.931034439 -2.9310	34439 19753.0864 65185.1853 0.00017778
-0.0002 -0.001728 -50.0000009 -0.000247306 39506.17284 0.000177778 94814.81517 50.27586207 55.86206897 -50.00000009 5.862068878	-5.9 39506.1728 0.00017778 94814.8152
Norm R 6.553	99225
vr fe q (kN-m) vp (rad) Dq (kN-m) q=q+Dq mr ve	
-0.001256897 0.00005625 -0.000028125 0 0 -50.27586207 -50.27586207 1 -0.001256897	
-0.001728233 -0.000028125 0.00005625 0 0 -55.86206897 1 -0.001728233	
app fp vp f=fe+fp K_viga=inv(f) vr	
<u>-0.275862069</u> 2812.5 0 -775.862069 2812.500056 -0.000028125 0.000355556 3.55556E-12 775.9	
-5.862068966 0 2812.5 -16487.06897 -0.000028125 2812.500056 3.55556E-12 0.000355556 16487.1	
Norm vr 16505.3144479	
vr f q (kN-m) vp (rad) Dq (kN-m) q=q+Dq mr ve	
775.862069 2812.500056 -0.00028125 -50.27586207 0 0.275862122 -49.99999995 0 -0.00140625	
E 16487.06897 -0.000028125 2812.500056 -55.86206897 0 5.862068851 -50.00000011 1 -0.00140625	
관 q-Mp fp vp f=fe+fp K_viga=inv(f) vr	
5.31034E-08 0 0 0 0.00005625 -0.000028125 17777.77787 0.000177778 0.0	
-1.14483E-07 0 2812.5 -0.000321983 -0.00028125 2812.500056 0.000177778 0.000355556 0.0	
Norm vr 0.0001494	
	1
vr f q(kN-m) vp(rad) Dq(kN-m) q=q+Dq mr ve	
0.000149553 0.00005625 0.000028125 -49.99999995 0 2.655172317 -47.34482763 0 -0.001256897	
5 -1.021/6E-11 -0.000028125 2812.500056 -50.00000011 0 2.65517E-08 -50.00000009 1 -0.001480927	
-8.7931E-V8 U 2812.5 -U.UU247300 -U.UU28125 2812.500050 U.UUU1///8 U.UU0355556 U.U	I

Figura IX-19. Resultados para λ =9, segunda iteración, rótulas elastoplásticas.

du(m)	u (m, rad)				ki(kN/m)			fs col der. (kN)	fs viga (kN)	fs(kN)	R=p-fs (kN)	Matriz de	rigidez final	iteracion
0.00031796	0.005880	q (kN-m)	vp (rad)	32921.8107	19753.08642	39506.1728				90	0	32921.8107	19753.0864	39506.1728
-0.0001413	-0.001398	-49.857143	0	19753.0864	65185.18527	0.00017778	36.90476188	53.09523812	-49.85714287	0	0	19753.0864	65185.1853	0.00017778
-0.0002	-0.001923	-50	-0.0005123	39506.1728	0.000177778	94814.8152	49.85714287	50.0000018	-50.0000018	0	0.0	39506.1728	0.00017778	94814.8152
										Norm R	0			

	vr	f	e	q (kN-m)	vp (rad)	Dq (kN-m)	q=q+Dq	mr	ve
	-0.0013982	0.00005625	-2.813E-05	0	0	-55.928571	-55.92857125	1	-0.001398214
n 1	-0.0019225	-2.813E-05 0.00005625		0	0	-62.142857	-62.14285695	1	-0.001922545
acic									
ter	q-Mp	fp		vp	vp f=fe+fp		K_viga	=inv(f)	vr
_	-5.9285713	2812.5	0	-16674.107	2812.500056	-2.813E-05	0.000355556	3.55556E-12	16674.1
	-12.142857	0	2812.5	-34151.785	-0.000028125	2812.50006	3.55556E-12	0.000355556	34151.8
								Norm vr	38004.8715630

	vr	f	:	q (kN-m)	vp (rad)	Dq (kN-m)	q=q+Dq	mr	ve
	16674.1066	2812.50006	-2.813E-05	-55.928571	0	5.92857126	-50	0	-0.00140625
u 2	34151.7852	2 -2.813E-05 2812.5000		-62.142857	0	12.1428568	-50.0000018	1	-0.00140625
Ei.									
ā									
Itera	q-Mp	f	0	vp	f=fe+f	p	K_viga	=inv(f)	vr
Itera	q-Mp 2.8571E-09	f 0	р О	vp 0	f=fe+f 0.00005625	o -2.813E-05	K_viga 17777.77787	=inv(f) 0.000177778	vr 0.0
ltera	q-Mp 2.8571E-09 -1.836E-07	f 0 0	p 0 2812.5	vp 0 -0.0005163	f=fe+f 0.00005625 -0.000028125	o -2.813E-05 2812.50006	K_viga 17777.77787 0.000177778	=inv(f) 0.000177778 0.000355556	vr 0.0 0.0

	vr f		F	q (kN-m)	vp (rad)	Dq (kN-m)	q=q+Dq	mr	ve
	8.0357E-06	0.00005625	-2.813E-05	-50	0	0.14285713	-49.85714287	0	-0.001398214
on 3	6.3759E-13 -2.813E-05		<mark>3</mark> -2.813E-05 2812.50006		0	1.4286E-09	-50.0000018	1	-0.001410268
acic									
Iter	q-Mp	f	р	vp	f=fe+f)	K_viga	=inv(f)	vr
lter	q-Mp 0.14285713	f 0	р 0	vp 0	f=fe+f 0.00005625	o -2.813E-05	K_viga 17777.77787	=inv(f) 0.000177778	vr 0.0
Iter	q-Mp 0.14285713 -1.821E-07	f 0 0	p 0 2812.5	vp 0 -0.0005123	f=fe+fj 0.00005625 -0.000028125	o -2.813E-05 2812.50006	K_viga 17777.77787 0.000177778	=inv(f) 0.000177778 0.000355556	vr 0.0 0.0

Figura IX-20. Resultados para λ =9, tercera iteración, rótulas elastoplásticas.

D	^	1	$\mathbf{\Omega}$
Pago	A —		()
I asu	10-	т.	v

	Lambda:	10													
	P(N)	u (m, rad)				ki(kN/m)		fs col izg (kN)	fs col dor. (kNI)	fe vigo (kN)	fs(kN)	R=p-fs (kN)	Matriz c	le rigidez final i	teracion
	100.0	0.005880	q (kN-m)	vp (rad)	32921.8107	19753.08642	39506.1728	15 COL12Q. (KN)	IS COLUEL. (KN)	is viga (Kiv)	90	10	32921.8107	19753.08642	39506.17284
	0.0	-0.001398	-49.85714287	-16674.107	19753.08642	65185.18527	0.00017778	36.90476188	53.09523812	-49.85714287	0	0	19753.08642	65185.18527	0.000177778
	0.0	-0.001923	-50.0000018	-34151.785	39506.17284	0.000177778	94814.8152	49.85714287	50.0000018	-50.0000018	0	0.0	39506.17284	0.000177778	94814.81517
Corte Basal	100.0										Norm R	10			
	vr	f	e	q (kN-m)	vp (rad)	Dq (kN-m)	q=q+Dq	mr	ve						
_	-0.001398214	0.00005625	-0.000028125	0	0	-55.92857125	-55.928571	1	-0.001398214						
u 1	-0.001922545	-2.8125E-05	0.00005625	0	0	-62.14285695	-62.142857	1	-0.001922545						
acie															
Iter	q-Mp	f	р	vp	f=fe	+fp	K_v	iga=inv(f)	vr						
	-5.928571253	2812.5	0	-16674.107	2812.500056	-0.000028125	0.00035556	3.55556E-12	16674.1						
	-12.14285695	0	2812.5	-34151.785	-0.000028125	2812.500056	3.5556E-12	0.000355556	34151.8						
								Norm vr	38004.871563						
	vr	1	f	q (kN-m)	vp (rad)	Dq (kN-m)	q=q+Dq	mr	ve						
8	16674.10665	2812.500056	-0.000028125	-55.928571	0	5.928571256	-50	0	-0.00140625						
uo	34151.78517	-2.8125E-05	2812.500056	-62.142857	0	12.14285676	-50	1	-0.00140625						
raci															
Ite	q-Mp	f	р	vp	f=fe	+fp	K_v	iga=inv(f)	vr						
	2.85714E-09	0	0	0	0.00005625	-0.000028125	17777.7779	0.000177778	0.0						
	-1.83571E-07	0	2812.5	-0.0005163	-0.000028125	2812.500056	0.00017778	0.000355556	0.0						
								Norm vr	0.000080						
	vr	1	F	q (kN-m)	vp (rad)	Dq (kN-m)	q=q+Dq	mr	ve						
e	8.03571E-06	0.00005625	-0.000028125	-50	0	0.142857127	-49.857143	0	-0.001398214						
on	6.37594E-13	-2.8125E-05	2812.500056	-50	0	1.42857E-09	-50	1	-0.001410268						
raci															
lte	q-Mp	f	р	vp	f=fe	+fp	K_v	iga=inv(f)	vr						
	0.14285713	0	0	0	0.00005625	-0.000028125	17777.7779	0.000177778	0.0						
	-1.82143E-07	0	2812.5	-0.0005123	-0.000028125	2812.500056	0.00017778	0.000355556	0.0						
								Norm vr	0.000000						

Figura IX-21. Resultados para λ =10, primera iteración, rótulas elastoplásticas.

du(m)	u (m, rad)				ki(kN/m)		fs col izq. (kN)	fs col der. (kN)	fs viga (kN)	fs(kN)	R=p-fs (kN)	Matriz de	rigidez final	iteracion
0.000954643	0.006834	q (kN-m)	vp (rad)	32921.8107	19753.08642	39506.17284				100	0	32921.8107	19753.0864	39506.1728
-0.000289286	-0.001687	-50.000001	-0.00028125	19753.08642	47407.40776	3.55556E-12	41.66666662	58.33333338	-50.000001	4.999999927	-4.999999927	19753.0864	47407.4078	3.5556E-12
-0.0004	-0.002320	-50.0000033	-0.000914062	39506.17284	3.55556E-12	94814.81517	55.0000003	50.0000038	-50.0000033	5E-08	0.0	39506.1728	3.5556E-12	94814.8152
										Norm R	4 999999927			

ſ		vr	fe		q (kN-m)	vp (rad)	Dq (kN-m)	q=q+Dq	mr	ve
		-0.0016875	0.00005625	-0.000028125	0	0	-67.49999964	-67.49999964	1	-0.0016875
	n 1	-0.002320312	-0.000028125	0.00005625	0	0	-74.9999996	-74.9999996	1	-0.002320312
	acic									
	Iter	q-Mp	fp		vp	f=fe	e+fp	K_viga	=inv(f)	vr
	_	-17.49999964	2812.5	0	-49218.74898	2812.500056	-0.000028125	0.000355556	3.55556E-12	49218.7
		-24.9999996	0	2812.5	-70312.49887	-0.000028125	2812.500056	3.55556E-12	0.000355556	70312.5
1									Normur	05077 2476647

	vr	f		q (kN-m)	vp (rad)	Dq (kN-m)	q=q+Dq	mr	ve
	49218.74898	2812.500056	-0.000028125	-67.49999964	0	17.49999954	-50.000001	1	-0.00140625
on 2	70312.49887	-0.000028125	2812.500056	-74.9999996	0	24.99999927	-50.0000033	1	-0.00140625
acic									
Iter	q-Mp	fp		vp	f=fe	e+fp	K_viga	=inv(f)	vr
_	-1E-07	2812.5	0	-0.00028125	2812.500056	-0.000028125	0.000355556	3.55556E-12	0.0
	-3.25E-07	0	2812.5	-0.000914062	-0.000028125	2812.500056	3.55556E-12	0.000355556	0.0
								Norm vr	0 000000

Figura IX-22. Resultados para λ =10, segunda iteración, rótulas elastoplásticas.

du(m)	u (m, rad)				ki(kN/m)		fs col izq. (kN)	fs col der. (kN)	fs viga (kN)	fs(kN)	R=p-fs (kN)	Matriz de	rigidez final	iteracion
0.00025312	0.007087	q (kN-m)	vp (rad)	32921.8107	19753.08642	39506.1728				100	0	32921.8107	19753.0864	39506.1728
-0.0002109	-0.001898	-50	-0.0004922	19753.0864	47407.40776	3.5556E-12	40.27777778	59.72222222	-50.0000018	0	0	19753.0864	47407.4078	3.5556E-12
-0.0001	-0.002426	-50	-0.0010195	39506.1728	3.55556E-12	94814.8152	50.0000018	50.0000036	-50.0000036	0	0.0	39506.1728	3.5556E-12	94814.8152
										Norm R	0			

	vr	f	е	q (kN-m)	vp (rad)	Dq (kN-m)	q=q+Dq	mr	ve
	-0.0018984	0.00005625	-2.813E-05	0	0	-73.749999	-73.74999946	1	-0.001898437
n 1	-0.0024258	-2.813E-05	0.00005625	0	0	-79.999999	-79.99999946	1	-0.002425781
acic									
Iter	q-Mp	f	р	vp	f=fe+f	D	K_viga	=inv(f)	vr
_	22 740000	2012 F	0	66706 972	2912 500056	2 012F OF	0.000255556	2 555565 12	66706.0
	-25.749999	2812.5	0	-00/90.8/3	2612.500050	-2.0136-03	0.0005555550	5.55550E-12	00790.9
	-29.999999	2812.5	2812.5	-84374.998	-0.000028125	2812.50006	3.55556E-12	0.000355556	84375.0

	vr	f	:	q (kN-m)	vp (rad)	Dq (kN-m)	q=q+Dq	mr	ve
	66796.8735	2812.50006	-2.813E-05	-73.749999	0	23.7499993	-50.0000018	1	-0.00140625
n 2	84374.9985	-2.813E-05	2812.50006	-79.999999	0	29.9999991	-50.0000036	1	-0.00140625
ci									
σ									
tera	q-Mp	fj	p	vp	f=fe+fi	C	K_viga	=inv(f)	vr
ltera	q-Mp -1.75E-07	f 2812.5	р 0	vp -0.0004922	f=fe+f 2812.500056	o -2.813E-05	K_viga 0.000355556	=inv(f) 3.55556E-12	vr 0.0
ltera	q-Mp -1.75E-07 -3.625E-07	f 2812.5 0	p0 0 2812.5	vp -0.0004922 -0.0010195	f=fe+fr 2812.500056 -0.000028125	o -2.813E-05 2812.50006	K_viga 0.000355556 3.55556E-12	=inv(f) 3.55556E-12 0.000355556	vr 0.0 0.0

Figura IX-23. Resultados para λ =10, tercera iteración, rótulas elastoplásticas.

X ANEXO B: EXCEL PARA RÓTULAS CON ENDURECIMIENTO DE 5%

Figura X-1. Propiedades estructura, rótulas con endurecimiento.

Paso $\lambda = 1$

	Lambda:	1									-				
	P(N)	u (m, rad)				ki(kN/m)		fc col izg (kN)	fc col dor (kN)	fouigo (kNI)	fs(kN)	R=p-fs (kN)	Matriz de	rigidez final iter	acion
	10.0	0.000000	q (kN-m)	vp (rad)	32921.8107	19753.08642	39506.1728	15 COI 12Q. (KIN)	IS COLUEL. (KN)	is viga (kiv)	0	10	32921.8107	19753.08642	39506.17284
	0.0	0.000000	0	0	19753.08642	71111.11111	11851.8519	0	0	(0 0	0	19753.08642	71111.11111	11851.85185
	0.0	0.000000	0	0	39506.17284	11851.85185	118518.519	0	0	(0 0	0.0	39506.17284	11851.85185	118518.5185
Corte Basal	10.0										Norm R	10			
										•					
	vr	f	e	q (kN-m)	vp (rad)	Dq (kN-m)	q=q+Dq	mr	ve						
	0	0.00005625	-0.000028125	0	0	0	0	0	0						
n 1	0	-2.8125E-05	0.00005625	0	0	0	0	0	0						
acic										_					
ter	q-Mp	f	р	vp	f=fe	+fp	K_vi	ga=inv(f)	vr						
_	0	0	0	0	0.00005625	-0.000028125	23703.7037	11851.85185	0.0						
	0	0	0	0	-0.000028125	0.00005625	11851.8519	23703.7037	0.0						

Figura X-2. Resultados para λ =1, primera iteración, rótulas con endurecimiento.

du(m)	u (m, rad)				ki(kN/m)		fs col iza (kN)	fc col dor (kN)	fe vigo (kN)	fs(kN)	R=p-fs (kN)	Matriz de	e rigidez final	iteracion
0.000617974	0.000618	q (kN-m)	vp (rad)	32921.8107	19753.08642	39506.17284	13 COI 12Q. (KN)	is coluer. (kiv)	is viga (kiv)	10	0	32921.8107	19753.0864	39506.1728
-0.000139655	-0.000140	-5.586206897	0	19753.08642	71111.11111	11851.85185	4.022988506	5.977011494	-5.586206897	0	0	19753.0864	71111.1111	11851.8519
-0.0002	-0.000192	-6.206896552	0	39506.17284	11851.85185	118518.5185	5.586206897	6.206896552	-6.206896552	0	0.0	39506.1728	11851.8519	118518.519
										Norm R	0			
										_		-		
	vr	fe		q (kN-m)	vp (rad)	Dq (kN-m)	q=q+Dq	mr	ve					
	-0.000139655	0.00005625	-0.000028125	0	0	-5.586206897	-5.586206897	0	-0.000139655					
n 1	-0.000192026	-0.000028125	0.00005625	0	0	-6.206896552	-6.206896552	0	-0.000192026					
acic										-				
ter	q-Mp	fp		vp	f=f	e+fp	K_viga	=inv(f)	vr					
-	44.4137931	0	0	0	0.00005625	-0.000028125	23703.7037	11851.85185	0.0					
	43.79310345	0	0	0	-0.000028125	0.00005625	11851.85185	23703.7037	0.0					

Figura X-3. Resultados para λ =1, segunda iteración, rótulas con endurecimiento.

Norm vr

0.0 0.0

Paso $\lambda = 2$

	Lambda:	2													
	P(N)	u (m, rad)				ki(kN/m)		fc col izg (kN)	fc col dor (kNI)	fouigo (kNI)	fs(kN)	R=p-fs (kN)	Matriz de l	rigidez final iter	acion
	20.0	0.000618	q (kN-m)	vp (rad)	32921.8107	19753.08642	39506.1728	15 COL124. (KIN)	is coluer. (kiv)	is viga (kiv)	10	10	32921.8107	19753.08642	39506.17284
	0.0	-0.000140	-5.586206897	0	19753.08642	71111.11111	11851.8519	4.022988506	5.977011494	-5.586206897	0	0	19753.08642	71111.11111	11851.85185
	0.0	-0.000192	-6.206896552	0	39506.17284	11851.85185	118518.519	5.586206897	6.206896552	-6.206896552	0	0.0	39506.17284	11851.85185	118518.5185
Corte Basal	20.0										Norm R	10			
	vr	f	fe	q (kN-m)	vp (rad)	Dq (kN-m)	q=q+Dq	mr	ve						
	-0.000139655	0.00005625	-0.000028125	0	0	-5.586206897	-5.5862069	0	-0.000139655						
n 1	-0.000192026	-2.8125E-05	0.00005625	0	0	-6.206896552	-6.2068966	0	-0.000192026						
acic															
Iter	q-Mp	f	fp	vp	f=fe	+fp	K_vi	iga=inv(f)	vr						
	44.4137931	0	0	0	0.00005625	-0.000028125	23703.7037	11851.85185	0.0						
	43.79310345	0	0	0	-0.000028125	0.00005625	11851.8519	23703.7037	0.0						
								Norm vr	0.0						

Figura X-4. Resultados para $\lambda=2$, primera iteración, rótulas con endurecimiento.

du(m)	u (m, rad)				ki(kN/m)		fs col izq. (kN)	fs col der. (kN)	fs viga (kN)	fs(kN)	R=p-fs (kN)	Matriz de	rigidez final	iteracion
0.000617974	0.001236	q (kN-m)	vp (rad)	32921.8107	19753.08642	39506.17284				20	0	32921.8107	19753.0864	39506.1728
-0.000139655	-0.000279	-11.17241379	0	19753.08642	71111.11111	11851.85185	8.045977011	11.95402299	-11.17241379	0	0	19753.0864	71111.1111	11851.8519
-0.0002	-0.000384	-12.4137931	0	39506.17284	11851.85185	118518.5185	11.17241379	12.4137931	-12.4137931	0	0.0	39506.1728	11851.8519	118518.519
										Norm R	0			
										_		_		
	vr	fe		q (kN-m)	vp (rad)	Dq (kN-m)	q=q+Dq	mr	ve					
	-0.00027931	0.00005625	-0.000028125	0	0	-11.17241379	-11.17241379	0	-0.00027931					
n 1	-0.000384052	-0.000028125	0.00005625	0	0	-12.4137931	-12.4137931	0	-0.000384052					
acic														
ter	q-Mp	fp		vp	f=fe	e+fp	K_viga	=inv(f)	vr					
_	38.82758621	0	0	0	0.00005625	-0.000028125	23703.7037	11851.85185	0.0					
	37.5862069	0	0	0	-0.000028125	0.00005625	11851.85185	23703.7037	0.0					
								Norm vr	0.0					

Figura X-5. Resultados para λ =2, segunda iteración, rótulas con endurecimiento.

Paso $\lambda = 3$

	Lambda:	3													
	P(N)	u (m, rad)				ki(kN/m)		fc col izg (kN)	fc col dor (kN)	fc vigo (kNI)	fs(kN)	R=p-fs (kN)	Matriz de r	rigidez final iter	acion
	30.0	0.001236	q (kN-m)	vp (rad)	32921.8107	19753.08642	39506.1728	15 COI 12Q. (KN)	is coluer. (kiv)	is viga (kiv)	20	10	32921.8107	19753.08642	39506.17284
	0.0	-0.000279	-11.17241379	0	19753.08642	71111.11111	11851.8519	8.045977011	11.95402299	-11.17241379	0	0	19753.08642	71111.11111	11851.85185
	0.0	-0.000384	-12.4137931	0	39506.17284	11851.85185	118518.519	11.17241379	12.4137931	-12.4137931	0	0.0	39506.17284	11851.85185	118518.5185
Corte Basal	30.0										Norm R	10			
	vr	f	e	q (kN-m)	vp (rad)	Dq (kN-m)	q=q+Dq	mr	ve						
_	-0.00027931	0.00005625	-0.000028125	0	0	-11.17241379	-11.172414	0	-0.00027931						
u 1	-0.000384052	-2.8125E-05	0.00005625	0	0	-12.4137931	-12.413793	0	-0.000384052						
acic															
Iter	q-Mp	f	p	vp	f=fe	+fp	K_vi	ga=inv(f)	vr						
	38.82758621	0	0	0	0.00005625	-0.000028125	23703.7037	11851.85185	0.0						
	37.5862069	0	0	0	-0.000028125	0.00005625	11851.8519	23703.7037	0.0						
								Norm vr	0.0						

Figura X-6. Resultados para λ =3, primera iteración, rótulas con endurecimiento.

du(m)	u (m, rad)				ki(kN/m)		fs col izq. (kN)	fs col der. (kN)	fs viga (kN)	fs(kN)	R=p-fs (kN)	Matriz de	rigidez final	iteracion
0.000617974	0.001854	q (kN-m)	vp (rad)	32921.8107	19753.08642	39506.17284				30	0	32921.8107	19753.0864	39506.1728
-0.000139655	-0.000419	-16.75862069	0	19753.08642	71111.11111	11851.85185	12.06896552	17.93103448	-16.75862069	0	0	19753.0864	71111.1111	11851.8519
-0.0002	-0.000576	-18.62068966	0	39506.17284	11851.85185	118518.5185	16.75862069	18.62068966	-18.62068966	0	0.0	39506.1728	11851.8519	118518.519
										Norm R	0			
												_		
	vr	fe		q (kN-m)	vp (rad)	Dq (kN-m)	q=q+Dq	mr	ve					
	-0.000418966	0.00005625	-0.000028125	0	0	-16.75862069	-16.75862069	0	-0.000418966					
n 1	-0.000576078	-0.000028125	0.00005625	0	0	-18.62068966	-18.62068966	0	-0.000576078					
acic														
ter	q-Mp	fp		vp	f=fe	e+fp	K_viga	=inv(f)	vr					
_	33.24137931	0	0	0	0.00005625	-0.000028125	23703.7037	11851.85185	0.0					
	31.37931034	0	0	0	-0.000028125	0.00005625	11851.85185	23703.7037	0.0					
								Norm vr	0.0					

Figura X-7. Resultados para λ =3, segunda iteración, rótulas con endurecimiento.

Paso $\lambda = 4$

	Lambda:	4													
	P(N)	u (m, rad)				ki(kN/m)		fc col iza (kN)	fc col dor (kN)	fe vigo (kNI)	fs(kN)	R=p-fs (kN)	Matriz de	rigidez final iter	acion
	40.0	0.001854	q (kN-m)	vp (rad)	32921.8107	19753.08642	39506.1728	is colleq. (kiv)	IS COLUEL. (KN)	IS Viga (KIN)	30	10	32921.8107	19753.08642	39506.17284
	0.0	-0.000419	-16.75862069	0	19753.08642	71111.11111	11851.8519	12.06896552	17.93103448	-16.75862069	0	0	19753.08642	71111.11111	11851.85185
	0.0	-0.000576	-18.62068966	0	39506.17284	11851.85185	118518.519	16.75862069	18.62068966	-18.62068966	0	0.0	39506.17284	11851.85185	118518.5185
Corte Basal	40.0										Norm R	10			
	vr	f	fe	q (kN-m)	vp (rad)	Dq (kN-m)	q=q+Dq	mr	ve						
	-0.000418966	0.00005625	-0.000028125	0	0	-16.75862069	-16.758621	0	-0.000418966						
n 1	-0.000576078	-2.8125E-05	0.00005625	0	0	-18.62068966	-18.62069	0	-0.000576078						
acic															
Iter	q-Mp	f	fp	vp	f=fe	+fp	K_vi	ga=inv(f)	vr						
	33.24137931	0	0	0	0.00005625	-0.000028125	23703.7037	11851.85185	0.0						
	31.37931034	0	0	0	-0.000028125	0.00005625	11851.8519	23703.7037	0.0						
								Norm vr	0.0						

Figura X-8. Resultados para λ =4, primera iteración, rótulas con endurecimiento.

du(m)	u (m, rad)				ki(kN/m)		fs col izq. (kN)	fs col der. (kN)	fs viga (kN)	fs(kN)	R=p-fs (kN)	Matriz de	rigidez final	iteracion
0.000617974	0.002472	q (kN-m)	vp (rad)	32921.8107	19753.08642	39506.17284				40	0	32921.8107	19753.0864	39506.1728
-0.000139655	-0.000559	-22.34482759	0	19753.08642	71111.11111	11851.85185	16.09195402	23.90804598	-22.34482759	0	0	19753.0864	71111.1111	11851.8519
-0.0002	-0.000768	-24.82758621	0	39506.17284	11851.85185	118518.5185	22.34482759	24.82758621	-24.82758621	0	0.0	39506.1728	11851.8519	118518.519
										Norm R	0			
	vr	fe		q (kN-m)	vp (rad)	Dq (kN-m)	q=q+Dq	mr	ve					
	-0.000558621	0.00005625	-0.000028125	0	0	-22.34482759	-22.34482759	0	-0.000558621					
n 1	-0.000768103	-0.000028125	0.00005625	0	0	-24.82758621	-24.82758621	0	-0.000768103					
acic														
ter	q-Mp	fp		vp	f=fe	e+fp	K_viga	=inv(f)	vr					
_	27.65517241	0	0	0	0.00005625	-0.000028125	23703.7037	11851.85185	0.0					
	25.17241379	0	0	0	-0.000028125	0.00005625	11851.85185	23703.7037	0.0					
								Norm vr	0.0					

Figura X-9. Resultados para λ =4, segunda iteración, rótulas con endurecimiento.

Paso $\lambda = 5$

	Lambda:	5													
	P(N)	u (m, rad)				ki(kN/m)		fc col iza (kN)	fc col dor (kN)	fe vigo (kN)	fs(kN)	R=p-fs (kN)	Matriz de	rigidez final iter	acion
	50.0	0.002472	q (kN-m)	vp (rad)	32921.8107	19753.08642	39506.1728	is colleq. (kiv)	IS COLUEL. (KN)	TS VIga (KIN)	40	10	32921.8107	19753.08642	39506.17284
	0.0	-0.000559	-22.34482759	0	19753.08642	71111.11111	11851.8519	16.09195402	23.90804598	-22.34482759	0	0	19753.08642	71111.11111	11851.85185
	0.0	-0.000768	-24.82758621	0	39506.17284	11851.85185	118518.519	22.34482759	24.82758621	-24.82758621	0	0.0	39506.17284	11851.85185	118518.5185
Corte Basal	50.0										Norm R	10			
	vr	f	fe	q (kN-m)	vp (rad)	Dq (kN-m)	q=q+Dq	mr	ve						
	-0.000558621	0.00005625	-0.000028125	0	0	-22.34482759	-22.344828	0	-0.000558621						
n 1	-0.000768103	-2.8125E-05	0.00005625	0	0	-24.82758621	-24.827586	0	-0.000768103						
acic															
Iter	q-Mp	f	fp	vp	f=fe	+fp	K_vi	ga=inv(f)	vr						
	27.65517241	0	0	0	0.00005625	-0.000028125	23703.7037	11851.85185	0.0						
	25.17241379	0	0	0	-0.000028125	0.00005625	11851.8519	23703.7037	0.0						
								Normyr	0.0						

Figura X-10. Resultados para λ =5, primera iteración, rótulas con endurecimiento.

du(m)	u (m, rad)				ki(kN/m)		fs col izq. (kN)	fs col der. (kN)	fs viga (kN)	fs(kN)	R=p-fs (kN)	Matriz de	rigidez final	iteracion
0.000617974	0.003090	q (kN-m)	vp (rad)	32921.8107	19753.08642	39506.17284				50	0	32921.8107	19753.0864	39506.1728
-0.000139655	-0.000698	-27.93103448	0	19753.08642	71111.11111	11851.85185	20.11494253	29.88505747	-27.93103448	0	0	19753.0864	71111.1111	11851.8519
-0.0002	-0.000960	-31.03448276	0	39506.17284	11851.85185	118518.5185	27.93103448	31.03448276	-31.03448276	0	0.0	39506.1728	11851.8519	118518.519
										Norm R	0	l.		
										_				
	vr	fe		q (kN-m)	vp (rad)	Dq (kN-m)	q=q+Dq	mr	ve					
_	-0.000698276	0.00005625	-0.000028125	0	0	-27.93103448	-27.93103448	0	-0.000698276					
n 1	-0.000960129	-0.000028125	0.00005625	0	0	-31.03448276	-31.03448276	0	-0.000960129					
acic														
Iter	q-Mp	fp		vp	f=fe	e+fp	K_viga	=inv(f)	vr					
_	22.06896552	0	0	0	0.00005625	-0.000028125	23703.7037	11851.85185	0.0					
	18.96551724	0	0	0	-0.000028125	0.00005625	11851.85185	23703.7037	0.0					

Figura X-11. Resultados para λ =5, segunda iteración, rótulas con endurecimiento.

Norm vr

0.0

Paso λ=6

	Lambda:	6													
	P(N)	u (m, rad)				ki(kN/m)		fc col izg (kN)	fc col dor (kN)	fouigo (kNI)	fs(kN)	R=p-fs (kN)	Matriz de	rigidez final iter	acion
	60.0	0.003090	q (kN-m)	vp (rad)	32921.8107	19753.08642	39506.1728	15 COI 12Q. (KN)	is coluer. (kiv)	is viga (kiv)	50	10	32921.8107	19753.08642	39506.17284
	0.0	-0.000698	-27.93103448	0	19753.08642	71111.11111	11851.8519	20.11494253	29.88505747	-27.93103448	0	0	19753.08642	71111.11111	11851.85185
	0.0	-0.000960	-31.03448276	0	39506.17284	11851.85185	118518.519	27.93103448	31.03448276	-31.03448276	0	0.0	39506.17284	11851.85185	118518.5185
Corte Basal	60.0										Norm R	10			
	vr	f	fe	q (kN-m)	vp (rad)	Dq (kN-m)	q=q+Dq	mr	ve						
	-0.000698276	0.00005625	-0.000028125	0	0	-27.93103448	-27.931034	0	-0.000698276						
f ut	-0.000960129	-2.8125E-05	0.00005625	0	0	-31.03448276	-31.034483	0	-0.000960129						
acic															
Iter	q-Mp	f	fp	vp	f=fe	+fp	K_vi	ga=inv(f)	vr						
	22.06896552	0	0	0	0.00005625	-0.000028125	23703.7037	11851.85185	0.0						
	18.96551724	0	0	0	-0.000028125	0.00005625	11851.8519	23703.7037	0.0						
								Norm vr	0.0						

Figura X-12. Resultados para λ =6, primera iteración, rótulas con endurecimiento.

du(m)	u (m, rad)				ki(kN/m)		fs col izq. (kN)	fs col der. (kN)	fs viga (kN)	fs(kN)	R=p-fs (kN)	Matriz de	e rigidez final	iteracion
0.000617974	0.003708	q (kN-m)	vp (rad)	32921.8107	19753.08642	39506.17284				60	0	32921.8107	19753.0864	39506.1728
-0.000139655	-0.000838	-33.51724138	0	19753.08642	71111.11111	11851.85185	24.13793103	35.86206897	-33.51724138	0	0	19753.0864	71111.1111	11851.8519
-0.0002	-0.001152	-37.24137931	0	39506.17284	11851.85185	118518.5185	33.51724138	37.24137931	-37.24137931	0	0.0	39506.1728	11851.8519	118518.519
										Norm R	0			
	vr	fe		q (kN-m)	vp (rad)	Dq (kN-m)	q=q+Dq	mr	ve					
	-0.000837931	0.00005625	-0.000028125	0	0	-33.51724138	-33.51724138	0	-0.000837931					
1 nc	-0.001152155	-0.000028125	0.00005625	0	0	-37.24137931	-37.24137931	0	-0.001152155					

acic									
ten	q-Mp	fp		vp	f=fe	e+fp	K_viga	=inv(f)	vr
_	16.48275862	0	0	0	0.00005625	-0.000028125	23703.7037	11851.85185	0.0
	12.75862069	0	0	0	-0.000028125	0.00005625	11851.85185	23703.7037	0.0
								Norm vr	0.0

Figura X-13. Resultados para λ =6, segunda iteración, rótulas con endurecimiento.

Paso $\lambda = 7$

	Lambda:	7	1												
	P(N)	u (m, rad)				ki(kN/m)		6 I. (I.N.)	6 1 1 (11)	6 · // N	fs(kN)	R=p-fs (kN)	Matriz de	rigidez final iter	acion
	70.0	0.003708	q (kN-m)	vp (rad)	32921.8107	19753.08642	39506.1728	ts col izq. (KN)	ts col der. (KN)	fs viga (KN)	60	10	32921.8107	19753.08642	39506.17284
	0.0	-0.000838	-33.51724138	0	19753.08642	71111.11111	11851.8519	24.13793103	35.86206897	-33.51724138	0	0	19753.08642	71111.11111	11851.85185
	0.0	-0.001152	-37.24137931	0	39506.17284	11851.85185	118518.519	33.51724138	37.24137931	-37.24137931	0	0.0	39506.17284	11851.85185	118518.5185
Corte Basal	70.0										Norm R	10			
	vr	f	fe	q (kN-m)	vp (rad)	Dq (kN-m)	q=q+Dq	mr	ve						
	-0.000837931	0.00005625	-0.000028125	0	0	-33.51724138	-33.517241	0	-0.000837931						
n 1	-0.001152155	-2.8125E-05	0.00005625	0	0	-37.24137931	-37.241379	0	-0.001152155						
acic															
Iter	q-Mp	f	fp	vp	f=fe	+fp	K_vi	iga=inv(f)	vr						
	16.48275862	0	0	0	0.00005625	-0.000028125	23703.7037	11851.85185	0.0						
	12.75862069	0	0	0	-0.000028125	0.00005625	11851.8519	23703.7037	0.0						
								Norm vr	0.0						

Figura X-14. Resultados para λ =7, primera iteración, rótulas con endurecimiento.

du(m)	u (m, rad)				ki(kN/m)		fs col izq. (kN)	fs col der. (kN)	fs viga (kN)	fs(kN)	R=p-fs (kN)	Matriz de	rigidez final	iteracion
0.000617974	0.004326	q (kN-m)	vp (rad)	32921.8107	19753.08642	39506.17284				70	0	32921.8107	19753.0864	39506.1728
-0.000139655	-0.000978	-39.10344828	0	19753.08642	71111.11111	11851.85185	28.16091954	41.83908046	-39.10344828	0	0	19753.0864	71111.1111	11851.8519
-0.0002	-0.001344	-43.44827586	0	39506.17284	11851.85185	118518.5185	39.10344828	43.44827586	-43.44827586	0	0.0	39506.1728	11851.8519	118518.519
										Norm R	0			
												-		
	vr	fe		q (kN-m)	vp (rad)	Dq (kN-m)	q=q+Dq	mr	ve					
	-0.000977586	0.00005625	-0.000028125	0	0	-39.10344828	-39.10344828	0	-0.000977586					
n 1	-0.001344181	-0.000028125	0.00005625	0	0	-43.44827586	-43.44827586	0	-0.001344181					
acic														
ter	q-Mp	fp		vp	f=fe	e+fp	K_viga	=inv(f)	vr					
_	10.89655172	0	0	0	0.00005625	-0.000028125	23703.7037	11851.85185	0.0					
	6.551724138	0	0	0	-0.000028125	0.00005625	11851.85185	23703.7037	0.0					
								Norm vr	0.0					

Figura X-15. Resultados para λ =7, segunda iteración, rótulas con endurecimiento.

Paso λ=8

	Lambda:	8													
	P(N)	u (m, rad)				ki(kN/m)		fc col iza (kN)	fc col dor (kNI)	fe vigo (kN)	fs(kN)	R=p-fs (kN)	Matriz de	rigidez final iter	acion
	80.0	0.004326	q (kN-m)	vp (rad)	32921.8107	19753.08642	39506.1728	15 COI 12Q. (KN)	is coluer. (kiv)	TS VIga (KIN)	70	10	32921.8107	19753.08642	39506.17284
	0.0	-0.000978	-39.10344828	0	19753.08642	71111.11111	11851.8519	28.16091954	41.83908046	-39.10344828	0	0	19753.08642	71111.11111	11851.85185
	0.0	-0.001344	-43.44827586	0	39506.17284	11851.85185	118518.519	39.10344828	43.44827586	-43.44827586	0	0.0	39506.17284	11851.85185	118518.5185
Corte Basal	80.0										Norm R	10			
	vr	1	fe	q (kN-m)	vp (rad)	Dq (kN-m)	q=q+Dq	mr	ve						
	-0.000977586	0.00005625	-0.000028125	0	0	-39.10344828	-39.103448	0	-0.000977586						
n 1	-0.001344181	-2.8125E-05	0.00005625	0	0	-43.44827586	-43.448276	0	-0.001344181						
acic															
Iter	q-Mp	1	fp	vp	f=fe	e+fp	K_vi	ga=inv(f)	vr						
	10.89655172	0	0	0	0.00005625	-0.000028125	23703.7037	11851.85185	0.0						
	6.551724138	0	0	0	-0.000028125	0.00005625	11851.8519	23703.7037	0.0						
								Norm vr	0.0						

Figura X-16. Resultados para λ =8, primera iteración, rótulas con endurecimiento.

du(m)	u (m, rad)				ki(kN/m)		fs col izq. (kN)	fs col der. (kN)	fs viga (kN)	fs(kN)	R=p-fs (kN)	Matriz de	rigidez final	iteracion
0.000617974	0.004944	q (kN-m)	vp (rad)	32921.8107	19753.08642	39506.17284				80	0	32921.8107	19753.0864	39506.1728
-0.000139655	-0.001117	-44.68965517	0	19753.08642	71111.11111	11851.85185	32.18390805	47.81609195	-44.68965517	0	0	19753.0864	71111.1111	11851.8519
-0.0002	-0.001536	-49.65517241	0	39506.17284	11851.85185	118518.5185	44.68965517	49.65517241	-49.65517241	0	0.0	39506.1728	11851.8519	118518.519
										Norm R	0			
										_				
	vr	fe		q (kN-m)	vp (rad)	Dq (kN-m)	q=q+Dq	mr	ve					
	-0.001117241	0.00005625	-0.000028125	0	0	-44.68965517	-44.68965517	0	-0.001117241					
n 1	-0.001536207	-0.000028125	0.00005625	0	0	-49.65517241	-49.65517241	0	-0.001536207					
acic														
ter	q-Mp	fp		vp	f=fe	e+fp	K_viga	=inv(f)	vr					
_	5.310344828	0	0	0	0.00005625	-0.000028125	23703.7037	11851.85185	0.0					
	0.344827586	0	0	0	-0.000028125	0.00005625	11851.85185	23703.7037	0.0					
								Norm vr	0.0					

Figura X-17. Resultados para λ =8, segunda iteración, rótulas con endurecimiento.

Paso λ=9

	Lambda:	9													
	P(N)	u (m, rad)				ki(kN/m)		fc col iza (kN)	fc col dor (kN)	fouigo (kNI)	fs(kN)	R=p-fs (kN)	Matriz de	rigidez final iter	racion
	90.0	0.004944	q (kN-m)	vp (rad)	32921.8107	19753.08642	39506.1728	15 COI 12Q. (KIN)	IS COLUEL. (KIN)	IS VIGA (KIN)	80	10	32921.8107	19753.08642	39506.17284
	0.0	-0.001117	-44.68965517	0	19753.08642	71111.11111	11851.8519	32.18390805	47.81609195	-44.68965517	0	0	19753.08642	71111.11111	11851.85185
	0.0	-0.001536	-49.65517241	0	39506.17284	11851.85185	118518.519	44.68965517	49.65517241	-49.65517241	0	0.0	39506.17284	11851.85185	118518.5185
Corte Basal	90.0										Norm R	10			
	vr	1	fe	q (kN-m)	vp (rad)	Dq (kN-m)	q=q+Dq	mr	ve						
	-0.001117241	0.00005625	-0.000028125	0	0	-44.68965517	-44.689655	0	-0.001117241						
n 1	-0.001536207	-2.8125E-05	0.00005625	0	0	-49.65517241	-49.655172	0	-0.001536207						
acic															
Iter	q-Mp	1	fp	vp	f=fe	+fp	K_vi	ga=inv(f)	vr						
	5.310344828	0	0	0	0.00005625	-0.000028125	23703.7037	11851.85185	0.0						
	0.344827586	0	0	0	-0.000028125	0.00005625	11851.8519	23703.7037	0.0						
								Norm vr	0.000000						

Figura X-18. Resultados para λ =9, primera iteración, rótulas con endurecimiento.

du(m)	u (m, rad)				ki(kN/m)		fs col izq. (kN)	fs col der. (kN)	fs viga (kN)	fs(kN)	R=p-fs (kN)	Matriz de r	igidez final	iteracion
0.000617974	0.005562	q (kN-m)	vp (rad)	32921.8107	19753.08642	39506.17284				90	0	32921.8107	19753.0864	39506.1728
-0.000139655	-0.001257	-47.54931836	0	19753.08642	65598.62188	826.873385	36.20689655	53.79310345	-47.54931836	2.726543705	-2.726543705	19753.0864	65598.6219	826.873385
-0.0002	-0.001728	-50.40898156	-0.000230052	39506.17284	826.873385	96468.56158	50.27586207	55.86206897	-50.40898156	5.45308741	-5.5	39506.1728	826.873385	96468.5616
										Norm R	6.096737068			
	vr	fe		q (kN-m)	vp (rad)	Dq (kN-m)	q=q+Dq	mr	ve					
	-0.001256897	0.00005625	-0.000028125	0	0	-50.27586207	-50.27586207	1	-0.001256897					
, uo	-0.001728233	-0.000028125	0.00005625	0	0	-55.86206897	-55.86206897	1	-0.001728233					
aci														
Ite	q-Mp	fp		vp	f=fe	e+fp	K_viga	=inv(f)	vr					
	-0.275862069	0.0005625	0	-0.000155172	0.00061875	-0.000028125	1619.507706	73.61398666	0.0					
	-5.862068966	0	0.0005625	-0.003297414	-0.000028125	0.00061875	73.61398666	1619.507706	0.0					
								Norm vr	0.0033011					
	vr	f		q (kN-m)	vp (rad)	Dq (kN-m)	q=q+Dq	mr	ve					
~	0.000155172	0.00061875	-0.000028125	-50.27586207	0	0.494038695	-49.78182337	0	-0.001379621					
uo	0.003297414	-0.000028125	0.00061875	-55.86206897	0	5.351609909	-50.51045906	1	-0.0014411					
raci														
Ite	q-Mp	fp		vp	f=fe	e+fp	K_viga	=inv(f)	vr					
	0.218176626	0	0	0	0.00005625	-0.000028125	18191.21447	826.873385	0.0					
	-0.510459056	0	0.0005625	-0.000287133	-0.000028125	0.00061875	826.873385	1653.74677	0.0					
								Norm vr	0.0001227					
	vr	f		q (kN-m)	vp (rad)	Dq (kN-m)	q=q+Dq	mr	ve					
ω	0.000122724	0.00005625	-0.000028125	-49.78182337	0	2.23250501	-47.54931836	0	-0.001256897					
u	0	-0.000028125	0.00061875	-50.51045906	0	0.1014775	-50.40898156	1	-0.001498181					
raci														
lte	q-Mp	fp		vp	f=fe	e+fp	K_viga	=inv(f)	vr					
	2.450681636	0	0	0	0.00005625	-0.000028125	18191.21447	826.873385	0.0					
	-0.408981556	0	0.0005625	-0.000230052	-0.000028125	0.00061875	826.873385	1653.74677	0.0					
								Norm vr	0 000000					

Figura X-19. Resultados para λ =9, segunda iteración, rótulas con endurecimiento.

85

du(m)	u (m, rad)				ki(kN/m)		fs col izq. (kN)	fs col der. (kN)	fs viga (kN)	fs(kN)	R=p-fs (kN)	Matriz de	rigidez final	iteracion
0.00027521	0.005837	q (kN-m)	vp (rad)	32921.8107	19753.0864	39506.1728				90	0	32921.8107	19753.0864	39506.1728
-0.0001223	-0.001379	-49.913447	0	19753.0864	65598.6219	826.873385	36.81092221	53.18907779	-49.91344668	0	0	19753.0864	65598.6219	826.873385
-0.0002	-0.001896	-50.788253	-0.0004434	39506.1728	826.873385	96468.5616	49.91344668	50.78825348	-50.78825348	0	0.0	39506.1728	826.873385	96468.5616
										Norm R	0			

ſ		vr	fe	e	q (kN-m)	vp (rad)	Dq (kN-m)	q=q+Dq	mr	ve
l		-0.0013792	0.00005625	-2.813E-05	0	0	-55.16847	-55.16846986	1	-0.001379212
l	n 1	-0.0018964	-2.813E-05	0.00005625	0	0	-61.2983	-61.29829985	1	-0.001896416
l	acic									
	(0									
	tera	q-Mp	f	0	vp	f=fe	+fp	K_viga	=inv(f)	vr
	Itera	q-Mp -5.1684699	f 0.0005625	р О	vp -0.0029073	f=fe 0.00061875	+fp -2.813E-05	K_viga 1619.507706	=inv(f) 73.61398666	vr 0.0
	Itera	q-Mp -5.1684699 -11.2983	f 0.0005625 0	o 0 0.0005625	vp -0.0029073 -0.0063553	f=fe 0.00061875 -2.813E-05	+fp -2.813E-05 0.00061875	K_viga 1619.507706 73.61398666	=inv(f) 73.61398666 1619.507706	vr 0.0 0.0
	Itera	q-Mp -5.1684699 -11.2983	f 0.0005625 0	o 0 0.0005625	vp -0.0029073 -0.0063553	f=fe 0.00061875 -2.813E-05	+fp -2.813E-05 0.00061875	K_viga 1619.507706 73.61398666	=inv(f) 73.61398666 1619.507706 Norm vr	vr 0. 0.006988

	vr	f		q (kN-m)	vp (rad)	Dq (kN-m)	q=q+Dq	mr	ve
	0.00290726	0.00061875	-2.813E-05	-55.16847	0	5.17617544	-49.99229442	0	-0.001383546
on 2	0.00635529	-2.813E-05	0.00061875	-61.2983	0	10.5064624	-50.79183747	1	-0.001451008
acio									
tera	q-Mp	fr)	vp	f=fe	e+fp	K_viga	=inv(f)	vr
Itera	q-Mp 0.00770558	fr O	0 0	vp 0	f=fe 0.00005625	e+fp -2.813E-05	K_viga 18191.21447	=inv(f) 826.873385	vr 0.0
Itera	q-Mp 0.00770558 -0.7918375	fr 0 0	0 0.0005625	vp 0 -0.0004454	f=fe 0.00005625 -2.813E-05	e+fp -2.813E-05 0.00061875	K_viga 18191.21447 826.873385	=inv(f) 826.873385 1653.74677	vr 0.0 0.0

	vr	f	:	q (kN-m)	vp (rad)	Dq (kN-m)	q=q+Dq	mr	ve
	4.3344E-06	0.00005625	-2.813E-05	-49.992294	0	0.07884775	-49.91344668	0	-0.001379212
on 3	0	-2.813E-05	0.00061875	-50.791837	0	0.00358399	-50.78825348	1	-0.001453024
Ci.									
a									
tera	q-Mp	f	D	vp	f=fe	+fp	K_viga	=inv(f)	vr
Itera	q-Mp 0.08655332	fr 0	р 0	vp 0	f=fe 0.00005625	+fp -2.813E-05	K_viga 18191.21447	=inv(f) 826.873385	vr 0.0
ltera	q-Mp 0.08655332 -0.7882535	f 0 0	o 0 0.0005625	vp 0 -0.0004434	f=fe 0.00005625 -2.813E-05	+fp -2.813E-05 0.00061875	K_viga 18191.21447 826.873385	=inv(f) 826.873385 1653.74677	vr 0.0 0.0

Figura X-20. Resultados para λ =9, tercera iteración, rótulas con endurecimiento.

86

D	<u>^</u>	1	0
Pago	x —	· I.	()
1 0.00	10-	· .	υ

	Lambda:	10													
	P(N)	u (m, rad)				ki(kN/m)		fc col iza (kNI)	fc col dor (kN)	fe vigo (kN)	fs(kN)	R=p-fs (kN)	Matriz de	rigidez final iter	acion
	100.0	0.005837	q (kN-m)	vp (rad)	32921.8107	19753.08642	39506.1728	15 COI 12Q. (KIN)	is coluer. (kin)	is viga (kiv)	90	10	32921.8107	19753.08642	39506.17284
	0.0	-0.001379	-49.91344668	-0.0029073	19753.08642	65598.62188	826.873385	36.81092221	53.18907779	-49.91344668	0	0	19753.08642	65598.62188	826.873385
	0.0	-0.001896	-50.78825348	-0.0063553	39506.17284	826.873385	96468.5616	49.91344668	50.78825348	-50.78825348	0	0.0	39506.17284	826.873385	96468.56158
Corte Basal	100.0										Norm R	10			
	vr	f	e	q (kN-m)	vp (rad)	Dq (kN-m)	q=q+Dq	mr	ve						
	-0.001379212	0.00005625	-0.000028125	0	0	-55.16846986	-55.16847	1	-0.001379212						
n 1	-0.001896416	-2.8125E-05	0.00005625	0	0	-61.29829985	-61.2983	1	-0.001896416						
acic															
Iter	q-Mp	f	р	vp	f=fe	+fp	K_vi	ga=inv(f)	vr						
	-5.168469861	0.0005625	0	-0.0029073	0.00061875	-0.000028125	1619.50771	73.61398666	0.0						
	-11.29829985	0	0.0005625	-0.0063553	-0.000028125	0.00061875	73.6139867	1619.507706	0.0						
								Norm vr	0.006989						
	vr	t	f	q (kN-m)	vp (rad)	Dq (kN-m)	q=q+Dq	mr	ve						
2	0.002907264	0.00061875	-0.000028125	-55.16847	0	5.176175436	-49.992294	0	-0.001383546						
ы	0.006355294	-2.8125E-05	0.00061875	-61.2983	0	10.50646238	-50.791837	1	-0.001451008						
raci								1							
Ite	q-Mp	f	р	vp	f=fe	+fp	K_vi	ga=inv(f)	vr						
	0.007705575	0	0	0	0.00005625	-0.000028125	18191.2145	826.873385	0.0						
	-0.791837466	0	0.0005625	-0.0004454	-0.000028125	0.00061875	826.873385	1653.74677	0.0						
								Norm vr	0.0000043						
							_								
	vr	1	1	q (kN-m)	vp (rad)	Dq (kN-m)	q=q+Dq	mr	ve						
m	4.33439E-06	0.00005625	-0.000028125	-49.992294	0	0.078847748	-49.913447	0	-0.001379212						
io	0	-2.8125E-05	0.00061875	-50.791837	0	0.003583989	-50.788253	1	-0.001453024						
rac															
Ite	q-Mp	f	p	vp	f=fe	+tp	K_vi	ga=inv(t)	vr						
	0.086553323	0	0	0	0.00005625	-0.000028125	18191.2145	826.873385	0.0						
L	-0.788253478	0	0.0005625	-0.0004434	-0.000028125	0.00061875	826.873385	1653.74677	0.0						
								Norm vr	0.000000						

Figura X-21. Resultados para λ =10, primera iteración, rótulas con endurecimiento.

du(m)	u (m, rad)				ki(kN/m)		fs col izq. (kN)	fs col der. (kN)	fs viga (kN)	fs(kN)	R=p-fs (kN)	Matriz de	rigidez final	iteracion
0.000909372	0.006746	q (kN-m)	vp (rad)	32921.8107	19753.08642	39506.17284				100	0	32921.8107	19753.0864	39506.1728
-0.000269165	-0.001648	-50.45545454	-0.000256193	19753.08642	49026.91511	73.61398666	41.47346728	58.52653272	-50.45545454	4.660465087	-4.660465087	19753.0864	49026.9151	73.6139867
-0.0004	-0.002267	-51.41103548	-0.000793707	39506.17284	73.61398666	96434.32252	55.11591963	51.62287481	-51.41103548	0.211839322	-0.2	39506.1728	73.6139867	96434.3225
										Norm R	4.665277132			
	vr	fe		q (kN-m)	vp (rad)	Dq (kN-m)	q=q+Dq	mr	ve					
	-0.001648377	0.00005625	-0.000028125	0	0	-65.93508501	-65.93508501	1	-0.001648377					
n 1	-0.002266519	-0.000028125	0.00005625	0	0	-73.26120556	-73.26120556	1	-0.002266519					
acic														
ter	q-Mp	fp		vp	f=fe	+fp	K_viga	=inv(f)	vr					
	-15.93508501	0.0005625	0	-0.008963485	0.00061875	-0.000028125	1619.507706	73.61398666	0.0					
	-23.26120556	0	0.0005625	-0.013084428	-0.000028125	0.00061875	73.61398666	1619.507706	0.0					
								Norm vr	0.0158602					
	vr	f		q (kN-m)	vp (rad)	Dq (kN-m)	q=q+Dq	mr	ve					
	0.008963485	0.00061875	-0.000028125	-65.93508501	0	15.47963047	-50.45545454	1	-0.001392184					
U U	0.013084428	-0.000028125	0.00061875	-73.26120556	0	21.85017008	-51.41103548	1	-0.001472811					
acio														
Iter	q-Mp	fp		vp	f=fe	+fp	K_viga	=inv(f)	vr					
	-0.455454543	0.0005625	0	-0.000256193	0.00061875	-0.000028125	1619.507706	73.61398666	0.0					
	-1.411035485	0	0.0005625	-0.000793707	-0.000028125	0.00061875	73.61398666	1619.507706	0.0					
								Norm vr	0.0000000					

Figura X-22. Resultados para λ =10, segunda iteración, rótulas con endurecimiento.

du(m)	u (m, rad)				ki(kN/m)		fs col izq. (kN)	fs col der. (kN)	fs viga (kN)	fs(kN)	R=p-fs (kN)	Matriz de	rigidez final	iteracion
0.00022283	0.006969	q (kN-m)	vp (rad)	32921.8107	19753.0864	39506.1728				100	0	32921.8107	19753.0864	39506.1728
-0.0001847	-0.001833	-50.761445	-0.0004283	19753.0864	49026.9151	73.6139867	40.27042916	59.72957084	-50.76144467	0	0	19753.0864	49026.9151	73.6139867
-0.0001	-0.002360	-51.575799	-0.0008864	39506.1728	73.6139867	96434.3225	50.76144467	51.5757994	-51.5757994	0	0.0	39506.1728	73.6139867	96434.3225
										Norm R	0.0000			

	vr	fe	2	q (kN-m)	vp (rad)	Dq (kN-m)	q=q+Dq	mr	ve
	-0.0018331	0.00005625	-2.813E-05	0	0	-71.41937	-71.41936968	1	-0.001833075
n 1	-0.0023599	-2.813E-05	0.00005625	0	0	-77.662756	-77.66275592	1	-0.00235986
acio									
10									
Itera	q-Mp	fj	D	vp	f=fe	e+fp	K_viga	=inv(f)	vr
Itera	q-Mp -21.41937	f 0.0005625	о О	vp -0.0120484	f=fe 0.00061875	+fp -2.813E-05	K_viga 1619.507706	=inv(f) 73.61398666	vr 0.0
Itera	q-Mp -21.41937 -27.662756	f 0.0005625 0	0 0.0005625	vp -0.0120484 -0.0155603	f=fe 0.00061875 -2.813E-05	+fp -2.813E-05 0.00061875	K_viga 1619.507706 73.61398666	=inv(f) 73.61398666 1619.507706	vr 0.0 0.0

	vr	f	:	q (kN-m)	vp (rad)	Dq (kN-m)	q=q+Dq	mr	ve
	0.0120484	0.00061875	-2.813E-05	-71.41937	0	20.657925	-50.76144467	1	-0.001404762
n 2	0.0155603	-2.813E-05	0.00061875	-77.662756	0	26.0869565	-51.5757994	1	-0.001473473
acic									
ter	q-Mp	f	p	vp	f=fe	e+fp	K_viga	=inv(f)	vr
_	-0.7614447	0.0005625	0	-0.0004283	0.00061875	-2.813E-05	1619.507706	73.61398666	0.0
	-1.5757994	0	0.0005625	-0.0008864	-2.813E-05	0.00061875	73.61398666	1619.507706	0.0
								Norm vr	0.0000000

Figura X-23. Resultados para λ =10, tercera iteración, rótulas con endurecimiento.