

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE Escuela de Ingeniería

ANÁLISIS Y DISEÑO DE PILOTES EN SUELOS LICUABLES

JORGE ERNESTO QUINTANILLA URZÚA

Informe de Actividad de Graduación para optar al Grado de Magíster en Ingeniería Estructural y Geotécnica

Profesor Supervisor:

CHRISTIAN LEDEZMA ARAYA

Santiago de Chile, Marzo 2022.

A mi adorada familia, por su comprensión infinita.

AGRADECIMIENTOS

Debo hacer una especial mención a mi amigo y colega Daniel Correa, con quien he contado desde siempre como mi mentor en el área de la ingeniería estructural, ayuda que ha sido muy valiosa y fundamental en esta última parte de mis estudios de magister.

Una muy especial mención hago a mi profesor supervisor, quien ha sido además un gran pilar en mi vida profesional y un excelente guía en la conducción de este trabajo, agradecer además su infinita paciencia para corregir y llevar esta investigación a buen puerto.

A mis colegas estructurales, Carlos Castro y Jorge Rojas, con quienes pude contar cada vez que necesité resolver dudas de modelación en SAP2000, a Eduardo Barrios mi jefe en Sacyr por todo su apoyo.

A todos ellos, mis sinceros agradecimientos.

INDICE GENERAL

	Pág.
AGRADECIMIENTOS	iii
INDICE DE TABLAS	V
INDICE DE FIGURAS	vi
RESUMEN	ix
ABSTRACT	X
1 POTENCIAL DE LICUACIÓN	1
1.1 Licuación	2
1.2 Casos Históricos Analizados	5
1.2.1 Caleta Lo Rojas	5
1.2.2 Puerto Coronel	
2 PREDICCIÓN DE CORRIMIENTO LATERAL INDUCIDO POR LICUA	CIÓN EN
CAMPO LIBRE	14
2.1 Modelos de Predicción de Corrimiento Lateral	14
2.1.1 Método de Youd et al. (2002)	14
2.1.2 Modelo de Araujo et al. (2021)	16
2.2 Casos Históricos Analizados	
2.2.1 Caleta Lo Rojas	
2.2.2 Muelle Norte, Puerto Coronel	
2.2.3 Muelle Sur, Puerto Coronel	
3 MODELACIÓN DE EFECTOS DEL CORRIMIENTO LATERAL	
3.1 Corrimiento Lateral como Presiones de Flujo	39
3.1.1 Modelo propuesto por JRA	39
3.1.2 Modelamiento en SAP 2000	44

3.2 Cor	rimiento Lateral como Desplazamientos de Flujo	. 52
3.2.1	Modelo de Tokimatsu y Asaka (1998)	52
3.2.2	Modelamiento en SAP 2000	56
4 VERIFIC	ACIÓN ESTRUCTURAL PILOTE CEPA Nº8 MUELLE NORTE	64
4.1 Ver	ificación Estructural Pilote	65
4.2 Ver	ificación Soldadura Capitel	67
5 DISCUSI	ONES Y CONCLUSIONES	68
6 RECOM	ENDACIONES	70
BIBLIOGRA	۶ÉA	71
ANEXOS		74
Anexo A:	Corrección SPT y MCA Licuación (SM-1)	74
Anexo B:	Corrección SPT y MCA Licuación (SPT-4)	76
Anexo C:	Corrección SPT y MCA licuación (SPT-2)	78
Anexo D:	Corrección SPT y MCA licuación (ST-1)	80
Anexo E:	Corrección SPT y MCA licuación (ST-2)	82
Anexo F:	Corrección SPT y MCA licuación (SST-1)	84
Anexo G:	Evaluación Corrimiento Lateral (cepa N°8/ST-2)	86
Anexo H:	Calculos Estructurales Pilote y Soldadura	90

INDICE DE TABLAS

Tabla 1-1: Ensayos SPT sondaje marítimo SM-1, caleta Lo Rojas (JQ-2010)7
Tabla 1-2: Ensayos SPT sondaje marítimo SPT-4, muelle norte puerto Coronel (JQ-2014) 8
Tabla 2-1: Coeficientes obtenidos del paso 5 – Cambio de forma de $log(R)$ a log (R^*) 16
Tabla 2-2: Coeficientes utilizados en ecuación MLR Araujo et al. (2021) 19
Tabla 2-3: Ensayos SPT sondaje terrestre ST-1, caleta Lo Rojas
Tabla 2-4: Evaluación desplazamiento horizontal por corrimiento lateral, caleta Lo Rojas.
Tabla 2-5: Evaluación desplazamiento lateral por corrimiento lateral, caleta Lo Rojas 27
Tabla 2-6: Ensayos SPT sondaje terrestre ST-2, muelle norte, puerto Coronel
Tabla 2-7: Evaluación desplazamiento horizontal por corrimiento lateral, muelle norte,
puerto Coronel. Ecuación de Youd et al (2002)
Tabla 2-8: Evaluación desplazamiento lateral por corrimiento lateral, muelle norte, puerto
Coronel. MLR Araujo et al (2021)
Tabla 2-9: Ensayos SPT sondaje terrestre SST-1, muelle sur, puerto Coronel
Tabla 2-10: Evaluación desplazamiento horizontal por corrimiento lateral, muelle sur, puerto
Coronel. Ecuación de Youd et al (2002)
Tabla 2-11: Evaluación desplazamiento lateral por corrimiento lateral, muelle sur, puerto
Coronel. MLR Araujo et al (2021)
Tabla 3-1: Evaluación presiones de flujo por corrimiento lateral, cepa Nº8, muelle norte,
puerto Coronel
Tabla 3-2: Evaluación de desplazamiento de flujo cepa N°8, muelle norte, puerto Coronel
Tabla 4-1: Esfuerzos máximos en pilote analizado previo a la falla, modelo SAP 2000 65
Tabla 4-2: Esfuerzos máximos en pilote analizado después de la falla, modelo SAP 200065
Tabla 4-3: Verificación pilote analizado antes de la falla, modelo SAP 2000
Tabla 4-4: Verificación pilote analizado después de la falla, modelo SAP 2000 66
Tabla 4-5: Esfuerzos máximos en pilote analizado antes de la falla, modelo SAP 2000 67
Tabla 4-6: Verificación pilote analizado antes de la falla, modelo SAP 2000

INDICE DE FIGURAS

Figura 1-1: rd versus curvas de profundidad, desarrolladas por Seed and Idriss (1971) con
la línea valor promedio de la ecuación (1-3) y (1-4) 4
Figura 1-2: Planta general muelle caleta Lo Rojas (junio 2010, Google Earth Pro)5
Figura 1-3: Ensayos SPT sondajes marítimos: (a) SM-1 caleta Lo Rojas (JQ-2010), (b) SPT-
4 muelle norte puerto Coronel (JQ-2014)
Figura 1-4: Desplazamiento horizontal acumulado (De la Maza et al., 2015)
Figura 1-5: Planta muelle norte y sur, puerto Coronel (junio 2010, Google Earth Pro) 11
Figura 1-6: Daños observados en muelle norte puerto Coronel, (a) Grietas y asentamientos
en pavimentos, (b) Rotación de pilotes de fundación (Ledezma y Tiznado, 2017) 11
Figura 1-7: Modelo de estabilidad de taludes post-licuefacción muelle norte. (Ledezma y
Tiznado, 2017) 12
Figura 2-1: Perfil de suelo sintético usado en el análisis de respuesta de sitio 17
Figura 2-2: Influencia de los parámetros de suelo en el desplazamiento lateral (LD), a)
Densidad relativa (Dr) vs desplazamiento lateral, b) Espesor de corteza (H_crust) vs
desplazamiento lateral, c) Espesor del suelo licuable (H_liq) vs desplazamiento lateral, d)
Inclinación (i) vs desplazamiento lateral
Figura 2-3: Residuales del modelo de Araujo et al (2021) versus, a) i, D_r , b) CAV, H_{liq} 20
Figura 2-4: Ubicación muelles analizados, casos históricos (junio 2020, Google Earth) 22
Figura 2-5: Planta general muelle caleta Lo Rojas (julio 2009, Google Earth Pro) 23
Figura 2-6: Sondaje ST-1, (a) Ensayos SPT v/s profundidad, (b) Factor de seguridad de
licuación (FS _L) v/s profundidad (Boulanger and Idriss, 2014)
Figura 2-7: Índice SBT de los sondajes SCPT, caleta Lo Rojas
Figura 2-8: Planta muelle norte, puerto Coronel (junio 2020, Google Earth Pro)
Figura 2-9: (a) Plano general muelle norte, puerto Coronel SPT, (b) Falla por cortante del
pilote desplazado, (c) Vista en planta de la zona de aproximación, (d) Elevación de la zona
de aproximación, (e) Daño del refuerzo: (1) Daño en atiesador y (2) Deformación del
atiesador, (f) Inclinación del eje del pilote (Brunet et al.,2012)
Figura 2-10: Sondaje ST-2, (a) Ensayo SPT v/s profundidad, (b) Factor de seguridad de
licuación (FS _L) v/s profundidad (Boulanger and Idriss, 2014)

Figura 2-11: Planta muelle sur, puerto Coronel (junio 2020, Google Earth Pro) 33
Figura 2-12: Sondaje SST-1, (a) Ensayo SPT v/s profundidad, (b) Factor de seguridad de
licuación v/s profundidad (Boulanger and Idriss, 2014)
Figura 3-1: Modelos de corrimiento lateral sobre un pilote, (a) Condición típica, (b)
Modelado como desplazamiento de flujo, (c) Modelado como presión de flujo 38
Figura 3-2: Modelo para calcular el corrimiento lateral como presiones de flujo
Figura 3-3: Ubicación de sondajes geotécnicos disponibles en el sector del muelle norte
(Ledezma y Tiznado, 2017)
Figura 3-4: Sección pilote 22" y 9,5 mm de espesor. SAP 2000 44
Figura 3-5: Modelo presiones de flujo sobre pilote. SAP 2000 46
Figura 3-6: Definición de elementos link, ecuación constitutiva de cada elemento de suelo.
SAP 2000
Figura 3-7: Diagramas de esfuerzos modelo SAP 2000, a) Diagrama de momento, b)
Diagrama de corte
Figura 3-8: Esfuerzos en elemento superior pilote, unión con tablero
Figura 3-9: Esfuerzos máximos en pilote, zona inferior capa licuada
Figura 3-10: Diagramas de deformación SAP 2000 (desplazamientos en metros), a) Pilote
unido al tablero del muelle (antes de la falla), b) Pilote desoldado (después de la falla) 51
Figura 3-11: Esquema con perfil de desplazamiento lateral
Figura 3-12: Relación entre desplazamiento horizontal del frente de agua y longitud del área
del corrimiento lateral. Tokimatsu y Asaka (1998)
Figura 3-13: Relación del desplazamiento horizontal del terreno con la distancia al frente de
agua. Tokimatsu y Asaka (1998) 53
Figura 3-14: Modelo desplazamientos de flujo sobre pilote, SAP 2000
Figura 3-15: Ecuación bilineal elasto-plástica p-y 57
Figura 3-16: Definición de elementos link, ecuación constitutiva de un elemento de suelo en
zona alterada
Figura 3-17: Definición de elementos link, ecuación constitutiva de un elemento de suelo en
zona sana 59
Figura 3-18: Diagramas de esfuerzos modelo SAP 2000, a) Diagrama de momento, b)
Diagrama de corte

Figura 3-19: Esfuerzos en elemento superior pilote, unión con tablero	61
Figura 3-20: Esfuerzos máximos en pilote, zona inferior capa licuada	62
Figura 3-21: Diagramas de deformación SAP 2000 (desplazamientos en metros), a) Pil-	ote
unido al tablero del muelle (antes de la falla), b) Pilote desoldado (después de la falla)	63

RESUMEN

El procedimiento para estimar el potencial de licuefacción de suelos que ha tenido mayor aceptación a nivel mundial es el propuesto por Seed (Seed & Idriss, 1971), el cual está basado en la prueba de penetración estándar (SPT). Desde el año 1977, este procedimiento ha sido revisado y actualizado con el fin de mejorar el nivel predictivo del mismo (Varela & Donovan, 1977). Entre las muchas consecuencias de la licuefacción, el corrimiento lateral (lateral spreading) es uno de las más peligrosos (Youd et al., 2002). Youd et al. (2018) definieron el corrimiento lateral como el desplazamiento horizontal de una capa de suelo rígido (no licuado) sobre un suelo licuado, ya sea por una pendiente suave o hacia una cara libre, hasta que alcanza una nueva posición de equilibrio.

La base de datos históricos que conforman los estudios existentes de licuación y corrimiento lateral, incorporan pocos datos de sismos de subducción y de gran magnitud, por lo mismo las fórmulas de uso ingenieril, como la propuesta por Youd et al. (2002), al ser utilizadas para estimar el corrimiento lateral en sismos de Chile (e.g., Puerto Coronel, Maule 2010) predicen valores muy excesivos, cuando por lo general los desplazamientos no superan unos cuantos metros (Youd et al., 2018).

Araujo et al. (2017) hace un valioso aporte al proponer una ecuación que evalúa el corrimiento lateral en casos de terremotos de subducción de gran magnitud. Con la ayuda de este estudio, más la especificación de diseño para puentes carreteros de la Asociación de Carreteras de Japón (JRA) y el estudio de Tokimatsu y Asaka (1998), en esta tesis se realizó una evaluación del corrimiento lateral de un pilote en la cepa N°8 del Muelle Norte (Puerto Coronel), que falló debido al corrimiento lateral gatillado por la licuación durante el terremoto del Maule 2010.

ABSTRACT

The procedure for estimating the liquefaction potential of soils that has been most widely accepted worldwide is the one proposed by Seed (Seed & Idriss, 1971), which is based on the standard penetration test (SPT). Since 1977, this procedure has been reviewed and updated in order to improve its predictive level (Varela & Donovan, 1977). Among the many consequences of liquefaction, lateral spreading is one of the most dangerous (Youd et al., 2002). Youd et al. (2018) defined lateral spreading as the horizontal displacement of a rigid (unliquefied) soil layer on a liquefied soil, either down a gentle slope or towards a free face, until it reaches a new equilibrium position.

The historical database that makes up the existing liquefaction and lateral spreading studies do not incorporate many data on subduction earthquakes and great magnitude, for the same reason the formulas for engineering use, such as the one proposed by Youd et al. (2002), when used to estimate lateral displacement in earthquakes in Chile (e.g., Puerto Coronel, Maule 2010), predict very excessive values, when displacements generally do not exceed a few meters (Youd et al., 2018).

Araujo et al., 2017, makes a valuable contribution by proposing an equation that evaluates the lateral spreading in the cases indicated above, with the help of this study, more the design specification for highway bridges of the Japan Road Association (JRA) and the study by Tokimatsu K. and Asaka Y. (1998), this thesis carried out an evaluation of the lateral displacement of a pile in portal N°8 of the North Pier (Puerto Coronel), which failed due to lateral displacement, triggered by liquefaction during the 2010 Maule earthquake.

1.- POTENCIAL DE LICUACIÓN

Se han desarrollado distintos documentos de orientación para el diseño que describen las mejores prácticas para la evaluación de la licuefacción (o licuación) en algunos proyectos (presas de terraplén, grandes presas, puentes, instalaciones de gas, puertos, facilidades portuarias y centrales nucleares).

El nivel de exigencia de cada uno de los documentos es muy dispar, ya que en algunos casos se trata solo de una guía de diseño, donde se puede establecer que se debe realizar una evaluación de licuefacción (OSBGE, 2014), mientras que en otros casos se pueden proporcionar requisitos detallados para la investigación del sitio y un procedimiento específico de análisis paso a paso para la evaluación de la licuefacción (Kavazanjian et al., 2011).

Otra dificultad para la definición de una práctica de evaluación de licuefacción es la rapidez con que se desarrollan y modifican los enfoques recomendados. Esto sucedió con Youd et al. (2001), ya que para 2004 como resultado de investigaciones continuas sobre el tema, grupos acreditados sugirieron conjuntos alternativos de cambios a los procedimientos de consenso, con mucho énfasis por parte de la comunidad técnica en dos enfoques alternativos (Boulanger e Idriss, 2004a; Cetin et al., 2004). Es importante señalar que esos talleres e informes abordaron únicamente la evaluación de la activación de la licuefacción; y no abordaron cuestiones asociadas con las consecuencias de la licuefacción.

Existen también trabajos que describen las consecuencias de la licuefacción, los que se refieren a: desplazamiento vertical y lateral del suelo, hundimiento y rotura de terraplenes, pérdida de capacidad de soporte, aumento de cargas laterales y menor resistencia lateral de estructuras, levantamiento (flotabilidad) y variación de los movimientos del terreno en campo libre. Se han desarrollado varios procedimientos para examinar los sitios en busca de posibles daños asociados a licuación: (1) establecer un umbral de movimiento del suelo por debajo del cual se espera que el daño por licuación sea intrascendente (FHWA, 2006; AASHTO, 2014), (2) detectar sitios con daño potencial basado en la aparición de manifestaciones superficiales (Ishihara, 1985), (3) determinación de un índice numérico de la gravedad de la activación, asociado al daño por licuación (LPI: Iwasaki et al., 1978; LPI_{ISH}: Maurer et al., 2015c; LSN: van Ballegooy et al., 2012).

1.1.- Licuación

Comprender como se activa la licuefacción y sus consecuencias requieren una comprensión de la mecánica del suelo y de los fluidos. Los suelos licuables son materiales granulares (no cohesivos); su resistencia a la deformación está influenciada por la fuerza con la que se presionan las partículas individuales. El término "tensión efectiva" se utiliza para describir la tensión asociada con estas fuerzas de contacto entre partículas.

Cuando los suelos saturados sujetos a un esfuerzo cortante que se invierte repetidamente (cíclico), no pueden contraerse debido a la presencia de agua en los poros del suelo, la presión del agua aumenta. Si esta presión alcanza el nivel de estrés efectivo inicial, se puede desencadenar la licuefacción (tensión efectiva nula). La medida en que un suelo tiende a contraerse o dilatarse durante el cizallamiento domina el comportamiento de licuefacción.

Varios factores afectan el potencial de licuación, por ejemplo: amplitud de la carga, el tipo de suelo, esfuerzo cortante inicial, amplitud de la deformación cortante, edad del depósito, y condiciones hidráulicas, entre otros.

La carga sísmica se puede caracterizar por esfuerzos cortantes repetidos de intensidad fluctuante, con la característica adicional de que la dirección del esfuerzo cortante aplicado se invierte.

La inversión del esfuerzo cortante es una característica importante de la carga sísmica, ya que tanto los suelos sueltos como los densos tienden a contraerse a pequeñas deformaciones cortantes inducidas y, por lo tanto, generan presiones intersticiales en exceso positivas cuando se someten a una inversión del esfuerzo cortante (Martin et al., 1975).

Whitman (1971) y Seed & Idriss (1971) propusieron un enfoque basado en la tensión para evaluar si se provoca licuación en un sitio. Desde esa fecha el método ha sufrido modificaciones, pero sigue manteniendo el mismo marco básico de evaluación. Tal método define el factor de seguridad frente a la ocurrencia de licuefacción como:

$$FS = \frac{CRR}{CSR} \tag{1-1}$$

donde:

CSR: Razón de tensión cíclica, medida de la carga sísmica inducida al suelo *CRR*: Razón de resistencia cíclica, medida de la resistencia del suelo frente a la licuación

El valor de *CSR* se puede determinar como:

$$CSR = 0.65 \cdot \left(\frac{PGA}{g}\right) \cdot \left(\frac{\sigma_{\nu 0}}{\sigma'_{\nu 0}}\right) \cdot r_d \tag{1-2}$$

donde la variable "*PGA*" corresponde a la componente horizontal de la aceleración máxima del suelo, "*g*" es la aceleración de gravedad, "*r_d*" es un factor que explica la respuesta norígida de la columna de suelo, " σ_{v0} " es el esfuerzo vertical total inicial en el suelo y " σ'_{vo} " es el esfuerzo vertical efectivo inicial en el suelo.

El coeficiente de reducción de estrés que modifica la razón de estrés cíclico (CSR), propuesto por Liao and Whitman (1986b) es, para $z \le 9,15$ m:

$$r_d = 1,0 - 0,00765 \cdot z \tag{1-3}$$

y para 9,15 m $< z \le 23$ m:

$$r_d = 1,174 - 0,0267 \cdot z \tag{1-4}$$

En la Figura 1-1 se puede ver la incertidumbre en (1-3) y (1-4), la cual aumenta significativamente a partir de los 15 m de profundidad. Pasado este rango de profundidades, el método simplificado propuesto por Youd et al. (2001) no ha sido verificado.

Distintos códigos de diseño limitan el fenómeno de la licuación a distintas profundidades, pasada la cual podría omitirse su evaluación:

- La norma Española UNE-EN 1998-5 (2018), indica que puede omitirse la evaluación de susceptibilidad a la licuefacción cuando el suelo arenoso saturado se encuentra a una profundidad mayor a 15 m medida desde la superficie.
- La Japan Road Association (2002), indica que la evaluación debe realizarse si se cumplen tres condiciones, una de ellas relacionada con la profundidad de la napa freática, la cual podría ser superior a los 10 m por debajo de la superficie, pero situada a una profundidad menor a 20 m por debajo de la superficie del suelo actual.

En cualquier caso, y desde el punto de vista físico, no existen razones para definir que no existe licuefacción a partir de una determinada profundidad.

Figura 1-1: r_d versus curvas de profundidad, desarrolladas por Seed and Idriss (1971) con la línea valor promedio de la ecuación (1-3) y (1-4)

El valor *CRR* (razón de resistencia cíclica) en el método simplificado original, fue evaluado a partir del número de golpes de la prueba de penetración estándar (SPT). Existen variantes posteriores que utilizan otros índices de la resistencia del suelo in situ, como son la prueba de penetración de cono (CPT) y velocidad de onda de corte (Vs).

La resistencia del suelo (*CRR*) fue correlacionada a casos históricos de terremotos de magnitud 7,5.

La ecuación que describe el factor de seguridad relaciona los valores *CRR* y *CSR* asociados a la magnitud del sismo medido, razón por lo cual el valor de $CRR_{7,5}$ debe ser ajustado por el MSF (Magnitude Scaling Factor). Con ello, el Factor de Seguridad (*FS*) queda:

$$FS = \frac{\left(CRR_{7,5} \cdot K_{\sigma} \cdot K_{\alpha} \cdot MSF\right)}{\left(0,65 \cdot \left(\frac{PGA}{g}\right) \cdot \left(\frac{\sigma_{\nu 0}}{\sigma_{\nu 0}'}\right) \cdot r_{d}\right)}$$
(1-5)

Los factores de corrección K_{σ} y K_{α} fueron desarrollados por Seed (1983) para extrapolar el procedimiento simplificado a condiciones de presión de sobrecarga y esfuerzo de corte estático mayores que las incorporadas en el conjunto de datos históricos de donde se derivó el procedimiento simplificado.

Se asume que la duración del movimiento del terremoto se incorpora en forma indirecta mediante el *MSF*, con el cual se ajustan las curvas de arenas limpias de *CRR* a magnitudes mayores o menores que 7,5.

1.2.- Casos Históricos Analizados

1.2.1.- Caleta Lo Rojas

El terremoto del Maule (2010) gatilló la licuación de suelos en varios puntos a lo largo de Chile. Uno de ellos fue caleta Lo Rojas, comuna de Coronel, lugar donde el muelle pesquero artesanal existente (estructura transparente conformada por pilotes tubulares de acero) colapsó debido a la falla de corrimiento lateral gatillada por la licuación generada en el fondo marino (De la Maza et al., 2015). El corrimiento lateral es el movimiento lateral finito de depósitos de suelo saturados de pendiente suave a pronunciada causados por la licuación de los suelos.

Figura 1-2: Planta general muelle caleta Lo Rojas (junio 2010, Google Earth Pro) El sector costero de Coronel, donde se desarrolló la licuación, corresponde a una zona industrial que concentra actividad pesquera, portuaria y energética. Por esta razón, los daños

en la infraestructura generaron gran impacto, siendo estudiado profusamente por distintas instituciones. En este estudio se utilizan los trabajos realizados en la caleta Lo Rojas (Informe Técnico 10010-01-ITE-002, JQ Ingeniería 2010) y en el puerto Coronel (Informe de Campo, JQ Ingeniería 2014). Los ensayos SPT analizados corresponden al sondaje SM-1 (caleta Lo Rojas) y al sondaje SPT-4 (muelle norte puerto Coronel). Los resultados del sondaje SM-1 se muestran en la Figura 1-3 y Tabla 1-1, mientras que los resultados del sondaje SPT-4 se muestran en la Figura 1-3 y Tabla 1-2.

Figura 1-3: Ensayos SPT sondajes marítimos: (a) SM-1 caleta Lo Rojas (JQ-2010), (b) SPT-4 muelle norte puerto Coronel (JQ-2014)

PENETRACIÓN - SPT						
Tramo (m)		NI		ND	NE	
Inicio	final	INI	INZ	113	INF	
10.00	10.45	4	5	2	7	
10.55	11.00	2	4	2	6	
11.00	11.45	14	25	27	52	
11.55	12.00	18	33	45	78	
12.00	12.45	9	12	10	22	
12.55	13.00	9	16	21	37	
13.00	13.45	2	3	3	6	
13.55	14.00	2	6	8	14	
14.00	14.45	2	2	4	6	
14.45	15.00	6	31	R	100	
15.00	15.45	11	12	15	27	
15.55	16.00	3	4	11	15	
16.00	16.45	9	27	R	100	
17.00	17.45	14	22	23	45	
18.00	18.45	15	50	R	100	
19.00	19.45	24	50	R	100	
20.00	20.45	5	5	10	15	
21.00	21.45	10	14	20	34	
22.00	22.45	10	35	44	79	
23.00	23.45	11	22	33	55	
24.00	24.45	14	24	27	51	
25.00	25.45	14	31	38	69	

Tabla 1-1: Ensayos SPT sondaje marítimo SM-1, caleta Lo Rojas (JQ-2010)

PENETRACIÓN - SPT						
Tramo (m)		N1	N2	N3	NF	
Inicio	final		142	113	TAT.	
0.00	4.00	-	-	-	-	
4.00	4.45	2	4	12	16	
5.00	5.45	13	20	34	54	
6.00	6.45	13	25	35	60	
7.00	7.45	18	36	42	78	
8.00	8.45	17	23	24	47	
9.00	9.45	4	6	6	12	
10.00	10.38	18	40	R/8cm	100	
10.50	10.78	40	R/13cm	-	100	
11.00	11.15	R/15cm	-	-	100	
11.50	11.60	R/10cm	-	-	100	
12.00	12.08	R/8cm	-	-	100	

Tabla 1-2: Ensayos SPT sondaje marítimo SPT-4, muelle norte puerto Coronel (JQ-2014)

El análisis de potencial de licuación en el sondaje SM-1 se realizó siguiendo los procedimientos de análisis propuestos por Boulanger e Idriss (2004 y 2014). Los ensayos de laboratorio (clasificación USCS, granulometría, IP) fueron desarrollados por DICTUC.

Los resultados de los análisis de licuación se adjuntan a este informe (Anexo A). El muelle de Lo Rojas (Proyecto Muelle Pesquero Artesanal Lo Rojas, 2003) fue desarrollada con pilotes de 12 ³/₄" de diámetro, de 16 y 17 m de ficha (longitud total 26 m), tablero de hormigón armado de 20 cm de espesor, con una longitud total de 100 m (86 m de puente de acceso y 14 m de cabezo). En la Figura 1-2 se puede apreciar una imagen satelital del muelle caleta Lo Rojas posterior al terremoto del 2010.

Durante el estudio de terreno posterior al terremoto (Bray et al., 2012), los desplazamientos horizontales acumulados fueron medidos sumando el ancho de las grietas a lo largo de la línea roja indicada en la Figura 1-2. El movimiento lateral máximo fue alrededor de 2,9 m en una distancia medida de aproximadamente 85 m (Figura 1-4).

Figura 1-4: Desplazamiento horizontal acumulado (De la Maza et al., 2015)

Para entregar comparaciones más cuantitativas, la Figura 1-4 muestra los desplazamientos horizontales acumulados medidos en la proyección de la línea medida por Bray et al. (2012), línea roja sobre Figura 1-2, para lo cual De la Maza et al. (2015) desarrollaron un modelo de elementos finitos hidro-mecánico acoplado e inelástico para reproducir las observaciones de terreno. En este modelo la mezcla sólido-fluido fue tratada de acuerdo a la formulación u-p (Zienkiewicz y Shiomi, 1984). Para imponer condiciones de campo libre en los bordes verticales se investigaron tres aproximaciones: FEM-DOF para imponer desplazamientos y presiones provenientes de una simulación de propagación unidimensional, FEM-FORCE para imponer fuerzas laterales equivalentes de los cómputos de las columnas 1D de campo libre (Bielak et al., 2003) y FEM-Column para incluir en el modelo 2D columnas de campo libre y bordes laterales (Mc Gann y Arduino, 2011).

De acuerdo a De la Maza et al. (2015), el modelo FEM-Column tiene la ventaja de requerir un único cálculo, en términos de valores máximos entregó el valor más cercano a las mediciones de terreno, desplazamiento acumulado igual al 57% del medido (Figura 1-4).

Los modelos FEM-DOF/Force, requieren dos fases de cálculo: primero debe resolverse la columna de campo libre 1D, luego se imponen al modelo 2D en sus bordes verticales los desplazamientos equivalentes o fuerzas. Los resultados de los modelos FEM-DOF/Force son prácticamente idénticos (Figura 1-4).

Al igual que De la Maza et al., (2015) es muy interesante notar que el desplazamiento acumulado entre los 20 y los 80 m desde la cara del muro considerado como referencia durante las mediciones post-sísmicas es muy similar a la obtenida por el modelo FEM-Column, pero el gran incremento en los primeros 20 m no es reproducido con precisión. Probablemente, grietas muy anchas fueron observadas en este sector, las que no pudieron ser reproducidas por la estrategia de modelación continua (método de elementos finitos).

1.2.2.-Puerto Coronel

El muelle norte del Puerto Coronel (Figura 1-5) fue construido entre 1995 y 1996, con dos sitios de amarre de 170 m de largo. Posteriormente, para aumentar la capacidad de la terminal se agregaron dos tramos de amarre adicionales, alcanzando el mulle norte una longitud total de 541 m. La estructura de soporte del muelle consiste en un tablero de hormigón armado, apoyado sobre vigas de acero longitudinales y transversales, sostenidas por pilotes de tubería de acero convencional hincados (verticales e inclinados en cuplas).

El muelle sur (Figura 1-5), por su parte, tiene 645 m de largo y se utiliza para carga de contenedores. Fue construido entre 2006 y 2007 utilizando un sistema de aislamiento de base que combina pilotes verticales en paralelo con aisladores elastoméricos colocados sobre grupos de cuatro pilotes inclinados interconectados (Brunet et al., 2012).

El muelle sur (SPT-2_2014) no sufrió daños visibles atribuibles a licuación, mientras que el muelle norte (SPT-4_2014), sufrió daños muy severos cerca de la plataforma de acceso, atribuibles al fenómeno de licuación y corrimiento lateral, incluyendo grietas y asentamientos del suelo, formación de cráteres y también rotaciones y desplazamientos de los cimientos de pilotes (Ledezma y Tiznado, 2017).

Figura 1-5: Planta muelle norte y sur, puerto Coronel (junio 2010, Google Earth Pro)

Figura 1-6: Daños observados en muelle norte puerto Coronel, (a) Grietas y asentamientos en pavimentos, (b) Rotación de pilotes de fundación (Ledezma y Tiznado, 2017)

Cerca de la plataforma de acceso al muelle norte, donde el daño inducido por la licuefacción fue más extenso, los pilotes tienen aproximadamente 50 cm de diámetro y 20 m de profundidad en promedio. Por tanto, estos pilotes no alcanzaron el nivel del lecho rocoso (González & Verdugo, 2012). Se cree que este hecho, además de las condiciones de fijación entre las cabezas de los pilotes y la superestructura, puede haber jugado un papel clave en el modo de falla observado de los cimientos de pilotes. En este sentido, uno de los efectos más importantes sobre la estructura del muelle debido al corrimiento lateral inducido por el

terremoto fue la rotación de los pilotes, lo que provocó el pandeo de los refuerzos en el lado de compresión y la deformación de los refuerzos en el lado de tracción de las vigas de soporte (Arduino et al., 2010).

Figura 1-7: Modelo de estabilidad de taludes post-licuefacción muelle norte. (Ledezma y Tiznado, 2017)

Basado en los datos geotécnicos disponibles, Ledezma y Tiznado (2017) desarrollaron un modelo de estabilidad de taludes del muelle norte del Puerto de Coronel (Figura 1-7). La evaluación de licuefacción en la zona de la plataforma de acceso al muelle muestra la presencia de dos capas potencialmente licuables: (i) una poco profunda, ubicada cerca de la superficie del suelo y que se extiende a una profundidad de unos 15 m por debajo del nivel del mar, y (ii) una más profunda, de 3 m de espesor en promedio, que recubre el lecho de roca. Se estimaron valores promedio (N1)_{60cs} de \approx 16 (golpes/pie) y \approx 5 (golpes/pie), respectivamente, para estas dos capas de arena. Se estimaron las razones S_{ur}/σ'_v para el modelo de estabilidad de taludes, utilizando Ledezma & Bray (2010), como 0,25 y 0,06, respectivamente.

El análisis de estabilidad se desarrolló para diferentes aceleraciones horizontales, tal de obtener una fuerza horizontal "F" que permitiese obtener un factor de seguridad (FS) de 1,0. Utilizando las relaciones de Bray and Travasarou (2007), se pudo obtener las fuerzas laterales versus las curvas de desplazamientos, el modelo 1 que corresponde a la estimación existente del pilote en cuanto a fijación de su cabeza y a la condición de empotramiento, proporcionó desplazamientos laterales permanentes en el rango de 50 a 100 cm, lo cual es

consistente con los desplazamientos medidos por el equipo de la asociación GEER en terreno (Arduino et al., 2010).

El sondaje SPT-4 se ubicó en el arranque del cabezo del muelle norte del puerto Coronel, en los primeros 4,5 m existe un fango, subyace a este una arena limosa hasta los 10 m de profundidad, cota donde los ensayos SPT comienzan a dar rechazo, con presencia de arenas cementadas y arcillas duras (cementación fuerte).

2.- PREDICCIÓN DE CORRIMIENTO LATERAL INDUCIDO POR LICUACIÓN EN CAMPO LIBRE

Entre las muchas consecuencias de la licuación, el corrimiento lateral es una de las más peligrosas (Youd et al., 2002). Los modelos de corrimiento lateral establecidos por Youd et al. (2018) y la JRA, definen como corrimiento lateral al desplazamiento lateral de una capa de suelo no licuable (costra) que se desplaza sobre el suelo licuado hasta encontrar el equilibrio, tal como se aprecia en la Figura 2-1. El suelo licuado a su vez se apoya sobre un suelo sano no licuado de pendiente suave o fuerte. Estos modelos simplificados no siempre se encuentran en la naturaleza, ya que suelen coexistir de manera entremezcladas distintas depositaciones geológicas, con capas de suelos licuables entre capas de suelos no licuables.

2.1.- Modelos de Predicción de Corrimiento Lateral

2.1.1.-Método de Youd et al. (2002)

La ecuación propuesta por Bartlett and Youd (1992, 1995), fue modificada en la investigación de Youd et al. (2002), cuyas mejoras y correcciones se resumen en los siguientes pasos:

Paso 1: Corrección de los desplazamientos mal calculados del terremoto de Japón (Nihonkai-Chubu, 1983). Esta corrección se realizó dividiendo la magnitud por un factor 1,9 para obtener valores correctos.

Paso 2: Eliminación de ocho vectores de desplazamiento para sitios donde los desplazamientos del corrimiento lateral estaban claramente impedidos por fuerzas de corte o compresión a lo largo de los márgenes o en la punta de la extensión lateral.

Paso 3: Se agregaron tres sitios con graves daños de corrimiento lateral debido a los terremotos, 1983 Borah Peak, Idaho; 1989 Loma Prieta, California; y 1995 en Kobe Japón. **Paso 4:** Cambio de forma del $D50_{15}$ a $log(D50_{15} + 0,1 mm)$, para mejorar el rendimiento predictivo del modelo y reducir la sensibilidad al tamaño de grano medio, la incorporación de la constante 0,1 mm se hizo para evitar la obtención de valores irrealmente grandes al evaluar valores muy próximos a cero.

Paso 5: Cambio de función de log(R) a log (R*). El término $b_2 \cdot logR$ en el modelo de Bartlett y Youd (1992, 1995) conduce a grandes desplazamientos cuando R tiende a cero. Para eliminar la necesidad de restringir los valores de R mínimos, se agregó un factor al término log(R) quedando log (R*), donde R*=R+R₀, donde R₀ = $10^{(0,89\cdot M-5,64)}$ Con estas modificaciones al modelo de Bartlett and Youd (1992, 1995) y al usar los coeficientes enumerados en la Tabla 2-1, las ecuaciones de predicción cambiaron a:

Modelo para cara libre:

$$log D_{H} = -16,713 + 1,532 \cdot M - 1,406 \cdot log R^{*} - 0,012 \cdot R + 0,592 \cdot log W + 0,540 \cdot log T_{15} + 3,413 \cdot log(100 - F_{15}) - 0,795 \cdot log(D50_{15} + 0,1 mm)$$

$$(2-1)$$

Modelo para pendiente suave:

$$\log D_{\rm H} = -16,213 + 1,532 \cdot M - 1,406 \cdot \log R^* - 0,012 \cdot R + 0,338 \cdot \log S + 0,540 \cdot \log T_{15} + 3,413 \cdot \log(100 - F_{15}) - 0,795 \cdot \log(D50_{15} + 0,1 \text{ mm})$$
(2-2)

Donde:

D_H: Desplazamiento lateral del terreno (m)

M: Magnitud de momento del sismo

R: Distancia horizontal o cartográfica más cercana desde el sitio a la fuente de energía sísmica (km)

 T_{15} : Espesor acumulado de capas de suelos granulares saturados con conteo de golpes corregidos, $(N_1)_{60}$, menores que 15 (m)

 F_{15} : Contenido de finos promedio para material granular incluidos dentro del T_{15} , (%)

D50₁₅: Tamaño promedio del grano medio del material granular dentro del T₁₅ (mm)

S: Pendiente del terreno (%)

W: Razón de la cara libre, definida como la altura H de la cara libre dividida por la distancia L de la base de la cara libre al punto en cuestión (%)

Parámetros	Consta	antes	Μ	Log R*	R	Log	Log	Log	Log	D50 ₁₅	Coeficientes
						W	S	T ₁₅	$(100-F_{15})$		de Regresión
Coeficientes	b ₀	b _{0ff}	b ₁	b ₂	b ₃	b ₄	b ₅	b ₆	b ₇	b ₈	R ² _c
Valores	-16.213	-0.500	1.532	-1.406	-0.012	0.592	0.338	0.540	3.413	-0.795	83.6

Tabla 2-1: Coeficientes obtenidos del paso 5 – Cambio de forma de log(R) a log (R^*)

2.1.2.-Modelo de Araujo et al. (2021)

Existen varios modelos empíricos que predicen la distancia que se moverá el suelo en un sector donde se produzca corrimiento lateral. Las regresiones multilineales utilizan una colección de datos históricos de corrimiento lateral para desarrollar ecuaciones que correlacionen las variables de entrada con los desplazamientos medidos.

La mayoría de los modelos empíricos utilizan las mismas variables de entrada usadas por Youd et al. (2002), como son la magnitud de momento (M_w), la distancia fuente-sitio (R o R_{rup}), el contenido de finos (F), la pendiente del terreno (S), y el espesor de las capas de suelo licuables con cantidad de golpes por pie menor a 15 (T_{15}). Otros modelos empíricos comúnmente utilizados en la práctica ingenieril son: Bardet et al. (2002), Faris et al. (2006), Rauch y Martin II (2000), Zhang et al. (2004) y Zhang et al. (2012), los cuales correlacionan algunas de las variables usadas por Youd et al. (2002).

Tyron, G.E. (2014) evalúo varios modelos empíricos predictivos utilizando el terremoto de subducción de gran magnitud sucedido en Chile, Maule Mw=8,8 de 2010, descubriendo que esos modelos sobrestimaban los desplazamientos laterales inducidos por la licuefacción en un factor mayor que dos. Además, el uso de distancia entre la fuente y el sitio de análisis, según se define en cada modelo, conduce a desplazamientos irrealmente grandes.

El corrimiento lateral puede tener consecuencias muy devastadoras para estructuras enterradas, por lo que es relevante poder determinar su magnitud. En la actualidad, para terremotos de subducción de gran magnitud (Mw>7,5) y en sitios ubicados en el área horizontal proyectada de la superficie de ruptura, existe el inconveniente de tener que definir adecuadamente el parámetro asociado a la distancia de la fuente distinto de cero, si se desea utilizar algunos de los modelos indicados anteriormente, tienden a predecir en exceso por un

factor de al menos dos los desplazamientos laterales en sitios cercanos a la fuente de gran magnitud (i.e., gran área de dislocación entre placas tectónicas).

El estudio paramétrico de Araujo et al. (2021) fue desarrollado usando modelos numéricos 1-D, perfiles simplificados de suelo, y registros de sismos de subducción de gran magnitud. Araujo et al. (2021) crearon 27 perfiles de suelo, variando el espesor de la capa licuable, la densidad relativa y la inclinación de la pendiente del terreno. El perfil constaba de tres capas de suelo (Figura 2-1): la capa superior e inferior son capas no licuables, con una densidad relativa DR=90% y la capa intermedia licuable. La profundidad total del perfil fue de 30 m en todos los análisis y se asumió el nivel del agua subterránea en la superficie.

Figura 2-1: Perfil de suelo sintético usado en el análisis de respuesta de sitio

La Figura 2-2 muestra la tendencia representativa de los desplazamientos laterales inducidos por la licuefacción versus los parámetros del suelo (20 sismos). La Figura 2-2a muestra que el desplazamiento lateral inducido por la licuefacción disminuye a medida que aumenta la DR en la capa de suelo licuable. La Figura 2-2b muestra que el espesor de la corteza no licuable no influye en la cantidad de desplazamiento lateral residual inducido por la licuación. La Figura 2-2c muestra que el desplazamiento aumenta significativamente a medida que aumenta el espesor de la capa licuable. La Figura 2-2d muestra que el desplazamiento lateral aumenta a medida que aumenta la pendiente del terreno.

Figura 2-2: Influencia de los parámetros de suelo en el desplazamiento lateral (LD), a) Densidad relativa (Dr) vs desplazamiento lateral, b) Espesor de corteza (H_crust) vs desplazamiento lateral, c) Espesor del suelo licuable (H_liq) vs desplazamiento lateral, d) Inclinación (i) vs desplazamiento lateral

Después de un extensivo análisis de las diferentes combinaciones de características, se identificaron que CAV, Sa(1s), H_{liq} , D_r e i (cuyos significados se entregan más adelante) son las características que entregan la mejor predicción. Como resultado, Araujo et al. (2021), proponen modelo presentado en la ecuación (2-3) para predecir la cantidad de corrimiento lateral.

$$\ln D_{H} = a_0 + a_1 \cdot \ln CAV + a_2 \cdot \ln Sa(1s) + a_3 \cdot H_{liq} + a_4 \cdot Dr + a_5 \cdot i +$$

$$a_6 \cdot \ln Sa(1s) \cdot \ln CAV$$
 (2-3)

donde:

D_H: Desplazamiento lateral del terreno (m)

CAV: Velocidad absoluta acumulada (cm/s)

Sa(1s): Pseudoaceleración en un período de 1 s (g)

H_{liq}: Espesor de las capas licuables (m)

D_r: Densidad relativa (%)

i: Pendiente del terreno (%)

Tabla 2-2: Coeficientes utilizados en	ecuación MLR Araujo et al. (2021)
---------------------------------------	-----------------------------------

coeficientes/valores				
a0=	-5.14			
a1=	0.94			
a2=	2.17			
a3=	0.02			
a4=	-0.03			
a5=	0.19			
a6=	-0.27			

La Figura 2-3 muestra los residuales del modelo predictivo contra los parámetros usados en la ecuación (2-3).

Figura 2-3: Residuales del modelo de Araujo et al (2021) versus, a) i, D_r , b) CAV, H_{liq} ,

c) Sa (1s)

2.2.- Casos Históricos Analizados

Tras el sismo del Maule 2010, se levantó información respecto a los daños provocados en la infraestructura marítima del sur del país, resultando muchas obras marítimas dañadas. En el estudio de Brunet et al. (2012) se observó que todos los puertos que sufrieron corrimiento lateral también sufrieron licuefacción, pero no se cumplió siempre lo contrario.

Los muelles analizados en la bahía de Coronel, tienen la particularidad de ser estructuras abiertas, su eje principal se dispone perpendicular a la línea de la costa, con una losa de hormigón armado que une las cabezas de los pilotes. Producto de la pendiente del fondo marino, los pilotes de la zona de aproximación (puente de acceso) son más cortos que los pilotes de la zona de atraque (cabezo), siendo por esto la zona de aproximación la zona más rígida del muelle. Por estas razones los pilotes del puente de acceso experimentan mayores demandas, mientras que la zona de atraque experimenta mayores desplazamientos. Cabe hacer presente que los pilotes inclinados orientados transversalmente respecto al eje principal del muelle son significativamente más rígidos que los pilotes verticales y, por ende, atraen fuerzas sísmicas más grandes.

Los muelles analizados (Figura 2-4) se encuentran ubicados en la bahía de Coronel y fueron afectados por licuación y corrimiento lateral durante el terremoto del Maule 2010. El muelle sur no presentó signos de daños producto de estos fenómenos, el cual está influenciado por su configuración estructural y aislación sísmica. Los desplazamientos obtenidos por los modelos de Brunet et al. (2012) fueron de 14,8 cm, lo que representa un 61% del desplazamiento de diseño ($D_D = 24$ cm), manteniéndose dentro del rango elástico.

2.2.1.-Caleta Lo Rojas

El muelle pesquero artesanal existente en la comuna de Coronel (estructura transparente conformada por pilotes tubulares de acero) colapsó debido a la falla de corrimiento lateral gatillada justamente por la licuación del fondo marino.

Figura 2-5: Planta general muelle caleta Lo Rojas (julio 2009, Google Earth Pro)

Las mediciones realizadas in situ posterior al terremoto del 2010, fueron registradas en el documento de Bray et al. (2012), donde el desplazamiento horizontal acumulado fue medido sumando el ancho de las grietas a lo largo de la línea roja indicada en la Figura 1-2 y Figura 2-5. El movimiento lateral máximo medido fue de 2,9 m en una distancia de aproximadamente 85 m.

Los desplazamientos laterales inducidos fueron estimados usando las ecuaciones propuestas por Youd et al. (2002) y Araujo et al. (2021). Para el caso de la caleta de pescadores de Lo Rojas, se utilizaron los ensayos SPT desarrollados en el sondaje ST-1 perforado el año 2014, con el cual se determinó que la capa licuable alcanzo los 7,45 m de profundidad. Los valores de los SPT se muestran en la Tabla 2-3. Los resultados del análisis de licuación se adjuntan en el Anexo D. En las capas de suelos finos se aplica criterio de Bray y Sancio (2006) para declararlos como zonas "no licuables", en la misma dirección apunta el criterio de Boulanger e Idriss (2006).

Figura 2-6: Sondaje ST-1, (a) Ensayos SPT v/s profundidad, (b) Factor de seguridad de licuación (FSL) v/s profundidad (Boulanger and Idriss, 2014)

Figura 2-7: Índice SBT de los sondajes SCPT, caleta Lo Rojas
Tramo	N	
Inicio	final	T.
1.00	1.45	11
2.00	2.45	14
3.00	3.45	10
4.00	4.45	4
5.00	5.45	5
6.55	6.45	6
7.00	7.45	5
8.55	8.45	6
9.00	9.45	10
10.45	10.45	3
11.00	11.45	3
12.55	12.45	3
13.00	13.45	2
14.00	14.45	1
15.00	15.45	2
16.00	16.45	1
17.00	17.45	2
18.00	18.45	10
19.00	19.45	13
20.00	20.45	15

Tabla 2-3: Ensayos SPT sondaje terrestre ST-1, caleta Lo Rojas

El resto de los parámetros utilizados en las ecuaciones 2-1 y 2-2 se obtuvieron del documento De la Maza et al. (2015), mientras que para la ecuación 2-3 los parámetros se obtuvieron de los antecedentes proporcionados por el estudio de Araujo et al. (2021) que se presentan a continuación. Con los datos obtenidos de los sondajes CPT (Figura 2-7) se determinó que el estrato licuable eran las arenas limpias, las cuales De la Maza et al. (2017) estimaron eran T_{15} =6,5 m.

Cara libre/R_modificado		Pendiente suave/R_modificado			
D _H =	3,5	(m)	D _H =	4,5	(m)
$Log(D_H)=$	0,5	ad	$Log(D_H)=$	0,7	ad
M=	8,8		M=	8,8	
R*=	235,59	(km)	R*=	235,59	(km)
Ro=	155,59	(km)	Ro=	155,59	(km)
R=	80	(km)	R=	80	(km)
S=	-	(%)	S=	5,45	(%)
W=	12	(%)	W=	-	(%)
T ₁₅ =	6,5	(m)	T ₁₅ =	6,5	(m)
F ₁₅ =	3	(%)	F ₁₅ =	3	(%)
D50 ₁₅ =	0,44	(mm)	D50 ₁₅ =	0,44	(mm)

Tabla 2-4: Evaluación desplazamiento horizontal por corrimiento lateral, caleta Lo Rojas. Ecuación de Youd et al. (2002)

Tabla 2-5: Evaluación desplazamiento lateral por corrimiento lateral, caleta Lo Rojas. MLR Araujo et al. (2021)

Ar	Araujo et al. (2021)		Araujo et al. (2021) evaluación JQ			
$\mathbf{D}_{\mathbf{h}} =$	2.31	(m)	D _h =	2.85	(m)	
$Ln(D_h) =$	0.8	ad	$Ln(D_h) =$	1.0	ad	
CAV =	1451	(cm/s)	CAV =	1451	(cm/s)	
Sa(1s) =	0.25	(g)	Sa(1s) =	0.25	(g)	
$H_{liq} =$	10	(m)	H _{liq} =	7.45	(m)	
$D_r =$	66.00	(%)	$D_r =$	49.00	(%)	
i =	6.3	(%)	i =	5	(%)	

Los cálculos que más se ajustan a las mediciones de campo, son los realizados utilizando la ecuación de Araujo et al. (2021). La principal diferencia entre los cálculos del presente estudio con los de Araujo et al. (2021) radica en el uso de un espesor de licuación menor y una densidad relativa menor, parámetros sensibles dentro de la ecuación propuesta. Los valores fueron obtenidos del análisis de licuación presentado en el Anexo D.

2.2.2.- Muelle Norte, Puerto Coronel

El muelle norte sufrió daños muy severos cerca de la plataforma de acceso, atribuibles al fenómeno de licuación y extensión lateral, incluyendo grietas, asentamientos del suelo, formación de cráteres, también rotaciones y desplazamientos de los cimientos de pilotes (Ledezma y Tiznado, 2017).

Figura 2-8: Planta muelle norte, puerto Coronel (junio 2020, Google Earth Pro)

Si bien en esta zona se generó licuación y posteriormente corrimiento lateral, los registros medidos por el equipo de la asociación GEER (Arduino et al., 2010), fueron de 1,0 a 1,2 m, mientras que los corrimientos de la unión pilote/losa fueron de 1,5 a 3,0 m.

Figura 2-9: (a) Plano general muelle norte, puerto Coronel SPT, (b) Falla por cortante del pilote desplazado, (c) Vista en planta de la zona de aproximación, (d) Elevación de la zona de aproximación, (e) Daño del refuerzo: (1) Daño en atiesador y (2) Deformación del atiesador, (f) Inclinación del eje del pilote (Brunet et al.,2012)

La evaluación de licuación realizada sobre los ensayos SPT desarrollados en el sondaje ST-2 perforado antes de 1998 por la empresa Petrus, determinó que las capas licuables alcanzaron un espesor acumulado de 11,25 m. Los ensayos SPT se muestran en la Figura 2-10 y Tabla 2-6. Los resultados del análisis de licuación se adjuntan en el Anexo E.

Figura 2-10: Sondaje ST-2, (a) Ensayo SPT v/s profundidad, (b) Factor de seguridad de licuación (FSL) v/s profundidad (Boulanger and Idriss, 2014)

Tramo	N	
Inicio	final	IN
1.00	1.45	2
2.00	2.45	10
3.00	3.45	17
4.00	4.45	45
5.00	5.45	38
6.00	6.45	20
7.00	7.45	18
8.00	8.45	15
9.00	9.45	25
10.00	10.45	10
11.00	11.45	12
12.00	12.45	10
13.00	13.45	18
14.00	14.45	22
15.00	15.45	16
16.00	16.45	18
17.00	17.45	2
20.00	20.45	75
21.00	21.45	75
22.00	22.45	38
23.00	23.45	40
24.00	24.45	50
25.00	25.45	8
26.00	26.45	2
28.00	28.45	8
30.00	30.45	100

Tabla 2-6: Ensayos SPT sondaje terrestre ST-2, muelle norte, puerto Coronel

El cálculo del corrimiento lateral se realizó sobre los datos recopilados en el sondaje ST-2, la batimetría del puerto, los datos de Ledezma y Tiznado (2017), y los antecedentes proporcionados por el estudio de Araujo et al (2021), que se presentan a continuación.

Cara libra	Cara libra sin fango/R_modificado		Pen	diente suave sin	
Cara nore sin rango/K_mounicauo		fango/R_modificado			
D _H =	4.8	(m)	D _H =	3.5	(m)
$Log(D_H)=$	0.7	ad	Log(D _H)=	0.5	ad
M=	8.8		M=	8.8	
R*=	235.59	(km)	R*=	235.59	(km)
Ro=	155.59	(km)	Ro=	155.59	(km)
R=	80	(km)	R=	80	(km)
S=	-	(%)	S=	4.9	(%)
W=	30	(%)	W=	-	(%)
T ₁₅ =	4.45	(m)	T ₁₅ =	4.45	(m)
F ₁₅ =	3.4	(%)	F ₁₅ =	3.4	(%)
D50 ₁₅ =	0.44	(mm)	D50 ₁₅ =	0.44	(mm)

Tabla 2-7: Evaluación desplazamiento horizontal por corrimiento lateral, muelle norte, puerto Coronel. Ecuación de Youd et al (2002)

Tabla 2-8: Evaluación desplazamiento lateral por corrimiento lateral, muelle norte, puerto Coronel. MLR Araujo et al (2021)

Araujo et al. (2021)_evaluación JQ				
Dh=	2,69	(m)		
Ln (Dh)=	1,0	ad		
CAV=	1451	(cm/seg)		
Sa(1s)=	0,25	(g)		
Hliq=	11,25	(m)		
Dr=	52,60	(%)		
i=	4,9	(%)		

Los cálculos que más se ajustan a las mediciones registradas directamente en terreno y del orden a las medidas en la Caleta Lo Rojas, fue la realizada utilizando la ecuación de Araujo et al. (2021). Los cálculos y valores utilizados en la ecuación de Araujo se entregan en el Anexo G. Cabe hacer presente que, al utilizar solo los estratos licuables hasta los 16 m de profundidad (D_r =59.3%, H_{liq} =9,8 m), con la fórmula de Araujo et al. (2021) se obtiene un D_h =2,14 m.

2.2.3.- Muelle Sur, Puerto Coronel

El muelle sur (SST-1) no sufrió daños visibles atribuibles a licuación, sin embargo se registraron desplazamientos relativos entre la zona de atraque aislada y la zona no aislada en el muelle, desplazamiento que fue de al menos 24 cm. Los análisis de licuación arrojan FS menores a 1 y los cálculos de corrimiento lateral entregan valores del mismo orden a los medidos y registrados en el muelle norte.

Figura 2-11: Planta muelle sur, puerto Coronel (junio 2020, Google Earth Pro)

La evaluación de licuación realizada con los ensayos SPT medidos en el sondaje SST-1, determinó que las capas licuables tienen un espesor acumulado de 5,66 m, los ensayos SPT se muestran en la Figura 2-12 y Tabla 2-9.

Figura 2-12: Sondaje SST-1, (a) Ensayo SPT v/s profundidad, (b) Factor de seguridad de licuación v/s profundidad (Boulanger and Idriss, 2014)

Tram	N	
Inicio	final	N
0.24	0.7	32
1.55	1.95	29
1.84	2.29	29
3.05	3.55	44
4.55	5	35
6.03	6.48	20
7.59	8.04	18
8.85	9.3	62
10.32	10.77	36
11.44	12.44	34
12.44	12.89	37
13.49	13.94	23
14.84	15.34	38
16.4	16.85	3
16.9	17.45	4
17.91	18.36	0
20.80	21.25	88
22.3	22.75	73
23.81	24.26	79
25.27	25.62	50
26.81	27.26	46
28.27	28.72	16
29.78	30.42	2
33.23	33.68	10
34.46	34.91	13
37.49	37.94	38
38.93	39.21	100
40.19	40.64	19
41.67	42.18	0
44.02	44.47	16

Tabla 2-9: Ensayos SPT sondaje terrestre SST-1, muelle sur, puerto Coronel

El cálculo del corrimiento lateral se realizó sobre los datos recopilados en el sondaje SST-1, la batimetría del puerto, los datos Ledezma y Tiznado (2017), y los antecedentes proporcionados por el estudio de Araujo et al. (2021) que se presentan a continuación.

Cara libre/R_modificado		Pendiente suave/R_modificado			
D _H =	4.9	(m)	D _H =	5.1	(m)
Log (D _H)=	0.7	ad	$Log (D_H) =$	0.7	ad
M=	8.8		M=	8.8	
R*=	202.59	(km)	R*=	202.59	(km)
Ro=	155.59	(km)	Ro=	155.59	(km)
R=	47	4(km)	R=	47	(km)
W=	30	(%)	S=	14	(%)
T ₁₅ =	3.2	(m)	T ₁₅ =	3.2	(m)
F15=	38	(%)	$F_{15} =$	38	(%)
D50 ₁₅ =	0.16	(mm)	D50 ₁₅ =	0.16	(mm)

Tabla 2-10: Evaluación desplazamiento horizontal por corrimiento lateral, muelle sur, puerto Coronel. Ecuación de Youd et al (2002)

Tabla 2-11: Evaluación desplazamiento lateral por corrimiento lateral, muelle sur, puerto Coronel. MLR Araujo et al (2021)

Araujo et al. (2021)				
D _h =	4.8	(m)		
Ln (D _h)=	1.6			
CAV=	1451	(cm/s)		
Sa(1s)=	0.25	(g)		
H _{liq} =	5.66	(m)		
Dr=	42.98	(%)		
i=	7	(%)		

En este sector no existen mediciones de campo, sin embargo sí existen registros de desplazamientos de la estructura en el rango elástico. Se espera que la zona de la bahía de Coronel donde se emplazan las obras analizadas haya presentado comportamientos similares en cuanto al desarrollo y magnitud del corrimiento lateral, ya que al menos los modelos predictivos indican la susceptibilidad de licuación en los tres sectores. Además en el trabajo de Brunet et al. (2012) se pudo establecer una relación que vincula la generación del corrimiento lateral y licuación, no así al revés. Los valores obtenidos en la Tabla 2-11, deben ser analizados con cautela, dado que la fórmula de Araujo et al. (2021) es muy sensible a la densidad relativa de los materiales licuados, espesor de la capa licuable y a la pendiente del sector.

La Asociación de Carreteras de Japón (JRA) indica que el movimiento lateral del suelo es posible si se cumplen dos condiciones:

- El terreno debe estar a una distancia menor a 100 m de un frente de agua en un área costera, formado por un revestimiento con una diferencia de elevación de 5m o más entre el fondo del agua y el suelo detrás del revestimiento.
- Además, el terreno debe poseer una capa de arena de espesor superior a 5 m que sea evaluado como una capa licuable de acuerdo con el método de análisis de la JRA (capítulo 8.2.3) y se distribuya ampliamente en el área del frente de agua.

Estas condiciones deben ser tomadas en cuenta en todos los análisis de corrimiento lateral que se realicen. En particular, en el Puerto Coronel donde no existe un frente de agua tal como lo define la JRA, además, el espesor de suelo licuado en los primeros 20 m de profundidad según el método de cálculo especificado por la JRA es de solo 3,5 m de espesor. Por lo tanto, este sector, según los criterios de la JRA, podría no desarrollar corrimiento lateral.

3.- MODELACIÓN DE EFECTOS DEL CORRIMIENTO LATERAL

El corrimiento lateral del suelo debido a la licuación puede dañar considerablemente los pilotes embebidos en el terreno, situación que debe ser considerado en el diseño sísmico de fundaciones piloteadas.

La Figura 3-1 muestra un pilote sometido al corrimiento lateral inducido por licuación. La masa de suelo desplazada aplica carga lateral sobre el pilote, mientras que el pilote en la parte "sana" del suelo, la que no está afecta a corrimiento lateral, se opone proporcionando resistencia lateral al pilote.

Figura 3-1: Modelos de corrimiento lateral sobre un pilote, (a) Condición típica, (b) Modelado como desplazamiento de flujo, (c) Modelado como presión de flujo

El corrimiento lateral es incluso más dañino si existe una capa superficial no licuada, que también se le conoce como "costra" (crust), cuya interacción con el pilote es más significativa en esta zona, situación que se observa en los diagramas de desplazamientos y de presiones, esquemas (b) y (c) de la Figura 3-1 respectivamente. La zona donde se desarrollan los diagramas de presiones y desplazamientos se le denomina zona alterada.

3.1.- Corrimiento Lateral como Presiones de Flujo

3.1.1.- Modelo propuesto por JRA

La Asociación de Carreteras de Japón (JRA), en la especificación de diseño de puentes carreteros, propone un método de evaluación del suelo licuado, el cual a su vez podría gatillar el desarrollo de corrimiento lateral.

En este contexto, los terrenos con posibles corrimientos laterales deben cumplir con dos condiciones:

- Terreno a una distancia menor a 100 m del frente de agua en un área costera formada por una pared con una diferencia de elevación de 5 m o más entre el fondo del agua y la superficie del suelo detrás.
- Terreno con una capa arenosa de espesor superior a 5 m que licue, según lo establecido en la misma especificación (Parte 5 Diseño Sísmico) y que se distribuya ampliamente en el sector.

No es necesario considerar la fuerza de inercia con la fuerza de corrimiento lateral simultáneamente. En este sentido Tokimatsu (1997) examinó la diferencia de fase entre fuerza de inercia y cinemática basadas en análisis de respuesta de un sistema de un grado de libertad y concluyo que cuando Tb>Tg, en donde Tb y Tg son los períodos de la estructura y el terreno respectivamente, la fuerza de inercia disminuye y, por lo tanto, solo es necesario considerar el efecto cinemático. Según De la Maza et al. (2015) la frecuencia fundamental para el sitio donde se emplaza la Caleta Lo Rojas es $f_0 = 1,66 Hz$, luego el período fundamental es T₀=Tg=0,64 s y para una muelle con pilotes y losa de hormigón armado, el período fundamental esta entorno a Tb≈1 s, por lo que se cumple la relación Tb>Tg, entonces analizaremos solo el efecto del corrimiento lateral.

El modelo propuesto se puede apreciar en la Figura 3-2. Las presiones de flujos para las capas no licuadas y licuadas se determinan con las ecuaciones (3-1) y (3-2) respectivamente:

$$q_{NL} = c_s \cdot c_{NL} \cdot K_p \cdot \gamma_{NL} \cdot x \tag{3-1}$$

$$q_{L} = c_{s} \cdot c_{L} \cdot [\gamma_{NL} \cdot H_{NL} + \gamma_{L} \cdot (x - H_{NL})]$$
(3-2)

donde:

 q_{NL} : Presión del corrimiento lateral (kN/m^2), actuando sobre la estructura en la capa No Licuada a una profundidad x(m)

 q_L : Presión del corrimiento lateral (kN/m^2), actuando sobre la estructura en la capa Licuada a una profundidad x(m)

 c_s : Factor de modificación en distancia desde el frente de agua. c_s toma los valores mostrados en la Japan Road Association (2002)

 $c_{\rm NL}$: Factor de modificación de la presión del corrimiento lateral en capas no licuadas. $c_{\rm NL}$ se evalua según se indica en la Japan Road Association (2002), de acuerdo al indice de licuación PL (m^2), obtenido de la siguiente ecuación:

$$P_{\rm L} = \int_0^{20} (1 - F_{\rm L}) \cdot (10 - 0.5 \cdot x) \cdot dx$$
(3-3)

c_L: Factor de modificación de la presión del corrimiento lateral en capas licuadas (se toma 0,3)

K_p: Coeficiente de presión pasiva del suelo (en condición normal)

 γ_L : Peso unitario promedio de la capa licuada (kN/m^3)

 $\gamma_{\rm NL}$: Peso unitario promedio de la capa no licuada (kN/m^3)

x: Profundidad desde la superficie del terreno (m)

H_{NL}: Espesor de capa no licuada (m)

H_L: Espesor de capa licuada (m)

F_L: Factor de resistencia a la licuación calculada por método de la JRA.

Si
$$F_L \ge 1$$
, $F_L = 1$

Figura 3-2: Modelo para calcular el corrimiento lateral como presiones de flujo

El modelo simplificado para evaluar corrimiento considera una costra o capa superior no licuada y subyacente a ésta la capa licuada, la cual termina siendo la que se deforma en corte y se lleva consigo a la costra. El perfil con el tipo de desplazamiento que se desarrolla se muestra en la Figura 3-11. La capa que no licua (costra) es la capa que en su eje vertical casi no se deforma, siendo la capa que más empuje desarrolla sobre la estructura, siendo del orden de 10 veces más grande que el empuje aplicado por el suelo licuado.

En el Anexo G se encuentran los cálculos realizados para el corrimiento lateral. Como el análisis se centra en la Cepa N°8 del muelle norte, se utiliza el sondaje más próximo y representativo (ST-2), realizado en tierra el año 1989 por Petrus Ingenieros.

En la Figura 3-3 se puede apreciar la ubicación de los sondajes disponibles en el sector. De todos los sondajes se optó por el ST-2 dado que alcanzo 38 m de profundidad, con lo cual se podría analizar de buena forma la profundidad de interés: 20 m, dado que esa fue la longitud de los pilotes y la profundidad establecida por la JRA como susceptible de desarrollar licuación.

Figura 3-3: Ubicación de sondajes geotécnicos disponibles en el sector del muelle norte (Ledezma y Tiznado, 2017)

En la Figura 2-9 se aprecia la ubicación de la cepa N°8, la cual sufrió una falla estructural de un pilote. La falla fue clara en la zona de unión con la viga transversal, lo que hace suponer una falla en la soldadura. Esto será analizado en el capítulo 4.

En la Figura 1-7 se muestra un perfil geológico del sector donde se emplaza el muelle norte. En este perfil se pueden apreciar los materiales susceptibles de licuar y gatillar el corrimiento lateral. La pendiente del sector (fondo marino) es muy gravitante en la evaluación del corrimiento lateral. Cuando el ángulo del talud sobre la horizontal es mayor que el ángulo de fricción interna del material, se sugiere también evaluar la estabilidad global.

A continuación, se muestran los valores de los empujes obtenidos en el suelo alterado, antes de que se produjese la falla del pilote. Los suelos corresponden a la capa no licuada (costra) y a la capa licuada (subyacente), que solicitan los pilotes de la cepa N°8, cortándose uno de ellos a nivel de la plancha capitel.

Prof.	Cota	Constitutiva	Constitutiva	~	~
r/fondo	modelo	Carga máx.	Def. máx.	YNL	ΥL (I−N/+++)
(m)	(m NRS)	(kN)	(m)	(KIN/M)	(KIN/M)
0	-11	-	-	0.00	0.00
1	-12	-	-	0.00	0.00
2	-13	-	-	0.00	0.00
3	-14	-	-	0.00	0.00
4	-15	-	-	105.70	0.00
5	-16	-	-	120.85	0.00
6	-17	-	-	0.00	7.61
7	-18	-	-	0.00	10.72
8	-19	-	-	0.00	13.83
9	-20	-	-	0.00	16.94
10	-21	-	-	0.00	20.05
11	-22	-	-	0.00	23.15
12	-23	-	-	0.00	26.26
13	-24	352	0.0383	0.00	29.37
14	-25	791	0.0157	0.00	0.00
15	-26	692	0.0565	0.00	0.00
16	-27	811	0.0294	0.00	0.00
17	-28	636	0.083	0.00	0.00
18	-29	662	0.0865	0.00	0.00
19	-30	689	0.09	0.00	0.00
20	-31	1028	0.0088	0.00	0.00

Tabla 3-1: Evaluación presiones de flujo por corrimiento lateral, cepa N°8, muelle norte, puerto Coronel

3.1.2.-Modelamiento en SAP 2000

Se realiza un modelo simplificado del pilote que falló, incorporando la interacción suelopilote a través de los elementos "link" de SAP2000 (https://www.csiamerica.com/products/sap2000).

El modelo requiere eliminar los resortes en la zona alterada, vale decir donde se desarrollan los empujes (costra y capa licuada), dejando solo elementos link en la zona de suelo "sano", correspondiente a la capa de suelo inferior que no licua.

El pilote analizado pertenece a la cepa N°8, el cual forma una cupla y está orientado hacia el sur (Figura 2-9).

Las características del pilote se obtuvieron de la investigación de Brunet et al. (2012) y registros fotográficos que existen de los planos originales del proyecto. A continuación, se presentan las principales propiedades estructurales y geométricas del pilote, identificado en el modelo como "Pipe 22".

Section Name	Pipe 22	Display Color
Section Notes	Modify/Show Notes	
Dimensions		Section
Outside diameter (t3)	0.56	2
Wall thickness (tw)	9.550E-03	
		Properties
Material	Property Modifiers	Section Properties
+ A572Gr50	Set Modifiers	Time Dependent Properties

Figura 3-4: Sección pilote 22" y 9,5 mm de espesor. SAP 2000

El modelo completo se muestra en la Figura 3-5, la que incluye además los elementos link. La constitutiva de cada elemento link es independiente para cada elemento de suelo. Sus propiedades elásticas son obtenidas a través del valor N_{SPT}. La constitutiva del material queda representada por una ecuación bilineal elasto-plástica p-y, definida con la rigidez (3-4) y plastificación del suelo (3-5).

$$k_{\rm h} = 56000 \cdot N \cdot (B \cdot 100)^{(-3/4)} \tag{3-4}$$

$$P_{máx} = 3 \cdot K_p \cdot \sigma_{v0} \tag{3-5}$$

donde:

k_h: rigidez del suelo (kN/m)

 $P_{máx}$: Plastificación del suelo (kN/m²)

N: Valor ensayo SPT

B: Diámetro del pilote (m)

 $\sigma_{v0}^{'}$: Presión de confinamiento efectiva inicial del suelo (kN/m²)

Figura 3-5: Modelo presiones de flujo sobre pilote. SAP 2000

Todos los elementos link son definidos en el programa SAP2000, indicando la fuerza máxima alcanzada en la plastificación, y la deformación que obtendría el elemento al movilizarse a través de la recta de su rigidez (balastos "sanos"), tal como se aprecia en la Figura 3-6.

Identif	cation				
Pro	perty Name		LIN13		
Dire	ection		U1		
Tvr	e	[MultiLine	ar El	astic
Ner	linear	[•	Yes		
NUI	ILIIIGai				
Proper	ties Used For L	inear Analy.	sis Cas	es	
Eff	ective Stiffness	•			0.
Eff	ective Damping				0.
Multial	inear Force De	formation D	efinition		
	Displ	Force	Chintion	~	
1	-1.	-352			f f f f f f f f f f f f f f f f f f f
2	-0.0383	-352	2.		
3	0.	0.			
4	0.0383	352		J	
		050		<u> </u>	
Or	der Rows	Dele			Add Row 6

Figura 3-6: Definición de elementos link, ecuación constitutiva de cada elemento de suelo. SAP 2000

Los datos de ingreso "input" para el programa SAP2000, son obtenidos con el análisis de corrimiento lateral como presiones de flujo y sus cálculos son presentados en el Anexo G. A continuación, se muestran gráficamente los esfuerzos de momento flector y corte que afectan la cabeza del pilote, instantes previos a su falla, cuando aún se encontraba unido a la viga travesaño de la super estructura. Se realiza el análisis en esta zona del pilote, ya que existe evidencia visual de la falla.

Figura 3-7: Diagramas de esfuerzos modelo SAP 2000, a) Diagrama de momento, b) Diagrama de corte

Case Items	Lateral Spreading Minor (V3 and M2) Single valued J.t. 21 LEnd: 0. m (0. m) J.t. 23 J-End: 0. m (17. m)	Display Options Scroll for Values Show Max
Equivale	nt Loads - Free Body Diagram (Concentrated Forces in KN, Concentrat	ed Moments in KN-m) Dist Load (3-dir) 0. KN/m at 17. m Positive in -3 direction Shear V3 60.738 KN at 17. m
Resultan	t Moment	Moment M2 -562.8193 KN-m at 17. m
Jeflectio		Deflection (3-dir) -0.025915 m at 11 m

Figura 3-8: Esfuerzos en elemento superior pilote, unión con tablero

Case Items	Lateral Spreading Minor (V3 and M2) Single valued	End Length Offset (Location) Jt: 6 I+End: 0. m (0. m) Jt: 7 J-End: 0. m (1. m)	Display Options Scroll for Values Show Max
Equivale	nt Loads - Free Body Diagram (Concentrated For	ces in KN, Concentrated Mor	nents in KN-m) Dist Load (3-dir) 0. KN/m at 1. m Positive in -3 direction
	L Sileai		Shear V3 294.723 KN at 1. m
Resultar	t Moment		Moment M2 -931.8772 KN-m at 1. m
		1	

Figura 3-9: Esfuerzos máximos en pilote, zona inferior capa licuada

Al momento de desconectar el pilote con el tablero, se genera una redistribución de esfuerzos sobre el pilote, luego la deformación máxima se desarrolla en la cabeza de este, la cual podemos ver en el modelo que se presenta a continuación (Figura 3-10), deformación que es del orden a la medición realizada en terreno al pilote de la cepa N°8 e informada por Brunet et al. (2012).

Figura 3-10: Diagramas de deformación SAP 2000 (desplazamientos en metros), a) Pilote unido al tablero del muelle (antes de la falla), b) Pilote desoldado (después de la falla)

3.2.- Corrimiento Lateral como Desplazamientos de Flujo

El modelo de corrimiento lateral como resultado de un desplazamiento de flujo, corresponde a un enfoque basado en aplicar un perfil de desplazamiento del suelo en campo libre a los extremos libres de los resortes del suelo alterado (extremos no unidos al pilote). Se entiende por suelo alterado al suelo licuado y a la costra de suelo sobre él. Los resortes del suelo son curvas p-y elasto-plásticas que se usan para describir la relación de la reacción del suelo frente a los desplazamientos laterales alrededor del pilote.

El perfil de deformaciones del suelo en el eje vertical se modela según se aprecia en la Figura 3-11, donde se aprecia la relevancia que tiene la deformación generada en la capa no licuada (costra).

Figura 3-11: Esquema con perfil de desplazamiento lateral

3.2.1.-Modelo de Tokimatsu y Asaka (1998)

Cuando ocurre el corrimiento lateral, el desplazamiento horizontal permanente de la superficie del suelo toma un valor máximo en el frente de agua y decrece con la distancia hasta esa línea. Shamoto y Hotta (1996), Yasuda et al. (1997), e Ishihara et al. (1997) investigaron los desplazamientos horizontales y verticales cerca de la frente de agua después del terremoto de Hyogoken-Nambu (M=7,2, 1995). La Figura 3-12 y Figura 3-13 resumen

las relaciones entre los desplazamientos horizontales de la superficie del suelo en el frente de agua, $D_{0,}$ y la longitud del área de corrimiento lateral, L=L_{1s}. Ambas normalizadas por el espesor de la capa licuada, H.

Figura 3-12: Relación entre desplazamiento horizontal del frente de agua y longitud del área del corrimiento lateral. Tokimatsu y Asaka (1998)

Figura 3-13: Relación del desplazamiento horizontal del terreno con la distancia al frente de agua. Tokimatsu y Asaka (1998)

La relación entre ambas expresiones queda expresada de la siguiente manera:

$$L/H = (25 \sim 100) \cdot D_0/H \tag{3-6}$$

El modelo utilizado con la aproximación simplificada del desplazamiento del suelo inducida por la licuación corresponde al propuesto por Tokimatsu y Asaka (1998), donde el desplazamiento horizontal de la superficie del suelo, D(x), a una distancia "x" del frente de agua, se puede expresar como:

$$D(x) = D_0 \cdot \left(\frac{1}{2}\right)^{(5x/L_{ls})}$$
(3-7)

donde $D_0 = D(x=0)$, denota el desplazamiento horizontal de la superficie del suelo en la línea de costa, y L_{ls} es la longitud del área de corrimiento lateral. Con base en los datos de campo del desplazamiento inducido por el corrimiento lateral en el terremoto de Kobe de 1995, L_{ls} = $(25 \sim 100) \cdot D_0$ y $L_{ls} = 50 \cdot D_0$ puede ser considerado representativo.

Luego, el perfil de desplazamiento del suelo de un depósito que se extiende lateralmente, $d_{ls}(z,x)$, a una distancia de la línea de costa de "x" se puede aproximar como:

$$d_{ls}(z, x) = D_0 \cdot \left(\frac{1}{2}\right)^{(x/(10 \cdot D_0))} \qquad (0 \le z < z_w)$$

$$d_{ls}(z, x) = D_0 \cdot \left(\frac{1}{2}\right)^{(x/(10 \cdot D_0))} \cdot \cos\left[\frac{\pi \cdot (z - z_w)}{2 \cdot H_L}\right] \qquad (z \ge z_w) \qquad (3-8)$$

donde:

z: profundidad por debajo de la superficie del suelo (m)

z_w: profundidad hasta la parte superior de la capa licuada (m)

H_L: Espesor de la capa licuada (m)

A continuación, en Tabla 3-2, se muestran los desplazamientos aplicados sobre el pilote en el suelo alterado y la constitutiva, mediante el modelo de desplazamientos de flujo, antes de que se produjese la falla del pilote.

Prof.	Cota	Deformación	Constitutiva	Constitutiva
r/fondo	modelo	Inducida	Carga máx.	Def. máx.
(m)	(m NRS)	$\mathbf{d}_{\mathbf{ls}}(\mathbf{z},\mathbf{x})(\mathbf{m})$	(kN)	(m)
0	-11	2.93	-	-
1	-12	2.93	-	-
2	-13	2.93	-	-
3	-14	2.93	-	-
4	-15	2.93	106	0.0014
5	-16	2.93	121	0.0021
6	-17	2.92	8	0.0004
7	-18	2.79	11	0.0022
8	-19	2.55	14	0.0004
9	-20	2.19	17	0.0007
10	-21	1.73	20	0.0033
11	-22	1.2	23	0.0030
12	-23	0.61	26	0.0043
13	-24	0	352	0.0383
14	-25	0	791	0.0157
15	-26	0	692	0.0565
16	-27	0	811	0.0294
17	-28	0	636	0.083
18	-29	0	662	0.0865
19	-30	0	689	0.09
20	-31	0	1028	0.0088

Tabla 3-2: Evaluación de desplazamiento de flujo cepa N°8, muelle norte, puerto Coronel

3.2.2.- Modelamiento en SAP 2000

El modelo completo se muestra en la Figura 3-14. En este modelo se usa la definición de suelo alterado y sano, para diferenciar la masa de suelo que fluye por el corrimiento lateral respecto a la que se mantiene intacta. Dado este flujo de masa se debe reducir el límite de plastificación del suelo en la zona alterada de forma adecuada. La costra o suelo no licuado se reduce por un factor de 1/3 ya que se eliminan los aportes de las paredes utilizadas en el cálculo de la expresión del empuje pasivo, mientras que en los suelos licuados la plastificación se reduce por un factor 1/20 (Ashford et al. 2011).

Figura 3-14: Modelo desplazamientos de flujo sobre pilote, SAP 2000

Los elementos link son definidos en el programa SAP2000 para representar la interacción entre el suelo y los pilotes. Las ecuaciones constitutivas que definen el comportamiento de las capas de suelos dependen del valor SPT. Tal como se indicó anteriormente, los suelos "sanos" mantienen el valor máximo de plastificación definido como el empuje pasivo. Los suelos en la zona alterada serán reducidos, dicha reducción en nuestro modelo se hace utilizando los valores de q_{NL} y q_L como valores de plastificación reducidos para las capas que no licuan y licuan respectivamente.

Figura 3-15: Ecuación bilineal elasto-plástica p-y

	rication				
Property Name		LIN12	2		
Di	rection	U1	U1		
Туре		Multil	MultiLinear Elastic		
No	onLinear	Yes			
Multi-	Linear Force-Def Displ	ormation Definit	tion		
1	-1.	-26.			
	-4.300E-03	-26.			
2	0	0.			
2 3	<u> </u>				
2 3 4	4.300E-03	-26.			

Figura 3-16: Definición de elementos link, ecuación constitutiva de un elemento de suelo en zona alterada

	ication				
Dro	nerty Name	LIN1	3		
FIG	perty Name		U1		
Dir	ection	01			
Тур	e	Mult	MultiLinear Elastic		
No	Linear	Yes			
D	Real Hand Fred				
Prope	ties Used For L	inear Analysis	Cases		
Eff	ective Stiffness			0.	
Eff	ective Damping			0.	
Multi-L	inear Force-De	formation Defin	ition		
	Displ	Force			
1	-1.	-352.			
2	-0.0383	-352.			
3	0.	0.			
	0.0383	352.	- v		
4					
4				Add Row 6	
4 0	der Rows	Delete R			

Figura 3-17: Definición de elementos link, ecuación constitutiva de un elemento de suelo en zona sana

Los datos de ingreso "input" para el programa SAP2000, son obtenidos con el análisis de corrimiento lateral como desplazamiento de flujos y sus cálculos son presentados en el Anexo G. A continuación, se muestran gráficamente los esfuerzos internos de momento flector y de corte que afectan la cabeza del pilote, previo a su falla cuando aún se encontraba unido a la viga travesaño de la superestructura. Tal como en el modelo anterior, se realiza el análisis en esta zona del pilote ya que existe evidencia física de la falla en esa unión.

Figura 3-18: Diagramas de esfuerzos modelo SAP 2000, a) Diagrama de momento, b) Diagrama de corte

Case Items	Lateral Spreading Minor (V3 and M2) Single valued V	End Length Offset (Location) Jt: 71 I-End: 0. m (0. m) Jt: 57 J-End: 0. m (6. m)	Display Options Scroll for Values Show Max
Resultan	nt Loads - Free Body Diagram (Concentrated For	Ces in KN, Concentrated Mon	hents in KN-m) Dist Load (3-dir) 0. KN/m at 6. m Positive in -3 direction Shear V3 67.477 KN at 6. m
Resultan	t Moment		Moment M2 -626.8001 KN-m at 6. m
Deflectio	ns	·	Deflection (3-dir) -0.015265 m at 3. m Positive in -3 direction

Figura 3-19: Esfuerzos en elemento superior pilote, unión con tablero
Case Items	Lateral Spreading Minor (V3 and M2) Single valued	End Length Offset (Location) Jt: 6 I-End: 0. m (0. m) Jt: 7 J-End: 0. m (1. m)	Display Options Scroll for Values Show Max
	nt Loads - Free Body Diagram (Concentrated Fo	rces in KN, Concentrated Mo	ments in KN-m) Dist Load (3-dir) 0. KN/m at 1. m Positive in -3 direction
	L Sileai		Shear V3 315.21 KN at 1. m
Resultan	t Moment		Moment M2 -973.8323 KN-m at 1. m
Deflectio	ns		 Deflection (3-dir) -0.000816 m at 0.5 m

Figura 3-20: Esfuerzos máximos en pilote, zona inferior capa licuada

A continuación, se muestran las deformaciones que se logran con este modelo, tanto cuando el pilote se encuentra conectado a la viga travesaño de la superestructura, y después de la desconexión (falla).

Figura 3-21: Diagramas de deformación SAP 2000 (desplazamientos en metros), a) Pilote unido al tablero del muelle (antes de la falla), b) Pilote desoldado (después de la falla)

4.- VERIFICACIÓN ESTRUCTURAL PILOTE CEPA Nº8 MUELLE NORTE

La Noma utilizada para las verificaciones es la AISC.

El Pilote analizado corresponde a la cepa N°8 del Muelle Norte en el Puerto Coronel, el pilote se encuentra en cupla, orientado hacia el sur.

El acero utilizado es calidad A252 Gr. 3, mientras que la soldadura es E70XX (Fmw = 393 MPa).

Las principales características geométricas y de resistencia del pilote son las siguientes:

F_v: Tensión de fluencia (ksi)

E: Módulo de elasticidad (MPa)

Ø: diametro del pilote (mm)

e: espesor del pilote (mm)

A: Sección transversal (mm²)

I: Inercia pilote $(mm^4) = 618 \times 10^6 (mm^4)$

S: Modulo de la sección $(mm^3) = 2213700 (mm^3)$

Z: Modulo Plastico $(mm^3) = 2866700 (mm^3)$

r: Radio de giro (mm) = 194,3 (mm)

 $F_v = 60 \text{ ksi} = 413 \text{ MPa}$

E = 210000 MPa

4.1.- Verificación Estructural Pilote

Las cargas solicitantes se resumen en la Tabla 4-1 y Tabla 4-2, provenientes del análisis de presiones de flujo sobre un pilote inclinado de la cepa N°8 previo a la falla, vale decir cuando se encuentra la cabeza del pilote unida a la super estructura. El detalle de los cálculos se presenta en el Anexo H.

	Cabeza pilote	unida a la suj	perestructura	
Momento Cabeza	Corte cabeza	Carga	Momento zona	Corte zona
(kN-m)	(k N)	axial (kN)	licuada (kN-m)	licuada (kN)
562.82	60.74	117	931.88	294.72

Tabla 4-1: Esfuerzos máximos en pilote analizado previo a la falla, modelo SAP 2000

Tabla 4-2: Esfuerzos máximos en pilote analizado después de la falla, modelo SAP 2000

Cabeza pilote desunida a la superestructura (condición de falla)													
Momento Cabeza (kN-m)	Corte cabeza (kN)	Carga axial (kN)	Momento zona licuada (kN-m)	Corte zona licuada (kN)									
_	-	117	2118.5	3051									

La verificación se realiza a una condición pseudo estática, cuando solo se genera la carga lateral por concepto de corrimiento lateral del suelo, para la verificación del pilote se consideró además el peso propio de la estructura. El resumen de las verificaciones a flexión, compresión y corte se presenta en la Tabla 4-3 y Tabla 4-4.

Tabla 4-3: Verificación pilote analizado antes de la falla, modelo SAP 2000

Cab	Cabeza pilote unida a la superestructura													
Verificación	Esfuerzos en cabeza	Resistencia	Condición											
Flexión (kN-m)	562.82	972	Verifica											
Compresión (kN)	117	738	Verifica											
Corte (kN)	61	1829	Verifica											

Cabeza	Cabeza pilote desunida a la superestructura													
Verificación	Esfuerzos en zona licuada)	Resistencia	Condición											
Flexión (kN/m)	2118.5	972	No verifica											
Compresión (kN)	117	738	Verifica											
Corte (kN)	3051	1829	No Verifica											

Tabla 4-4: Verificación pilote analizado después de la falla, modelo SAP 2000

El pilote de 22" no falla a la flexión, compresión ni corte mientras se encuentra unida al tablero. Sin embargo, tras la falla y posterior desunión con el tablero, se genera una redistribución de tensiones dado que el pilote queda actuando en cantiléver. Dada esta nueva configuración, el momento máximo se mantiene en la zona inferior del suelo licuado, pero su valor aumenta más de 2 veces en flexión y 10 veces en corte, lo que hace pensar en una probable falla en esa zona también. Esto no se pudo verificar en terreno.

4.2.- Verificación Soldadura Capitel

Las cargas solicitantes se resumen en la Tabla 4-5, provenientes del análisis de presiones de flujo sobre un pilote inclinado de la cepa N°8 previo a la falla, con las cuales se analizará y verificará la soldadura que se utilizó para unir la cabeza del pilote con la plancha capitel, que tiene 16 mm de espesor, el análisis se realiza para la condición previa a la falla. El detalle de los cálculos se presenta en el Anexo H.

Tabla 4-5: Esfuerzos máximos en pilote analizado antes de la falla, modelo SAP 2000

Cabeza pilote unida a superestructura												
Momento Cabeza	Corte Cabeza											
(kN-m)	(kN)											
562.82	60.74											

La verificación se realiza en una condición pseudo estática, cuando solo se genera la carga lateral por concepto de corrimiento lateral del suelo, para la verificación de la soldadura se consideró además el efecto del peso propio de la estructura. El resumen de las verificaciones de la soldadura a flexión y compresión se presenta en la Tabla 4-6.

Tabla 4-6: Verificación pilote analizado antes de la falla, modelo SAP 2000

Cabeza	Cabeza pilote unida a superestructura													
Verificación	Esfuerzo	Resistencia	Condición											
Corte (kN)	61	34.7	No verifica											
Flexión (kN-m)	562.82	783	Verifica											

La unión entre el pilote de 22" y la plancha capitel de 16 mm fallan al corte que se genera en la plancha capitel. Dicha situación se genera con el empuje debido al corrimiento lateral.

5.- DISCUSIONES Y CONCLUSIONES

El modelo simplificado de corrimiento lateral establecido por Youd et al. (2018) y la JRA, no siempre se encuentra en la naturaleza, ya que suelen estar entremezclados distintos tipos de depositaciones geológicas, con capas de suelos licuables entre capas de suelos no licuables. Es por esto último que debe prevalecer el criterio del Ingeniero Geotécnico, para establecer un modelo simplificado. Lo que en general se observa es que el suelo alterado está conformado por una costra superficial sobre el suelo licuado, tal como lo establece la literatura técnica. Las capas de suelos licuables que están sobre la costra no ayudan a desplazar el suelo no licuable, este último material genera proporcionalmente un mayor porcentaje de presión sobre los pilotes, en este estudio los empujes que traspasan los suelos no licuados (costra) al pilote corresponden a un 53% del total de los empujes

La pendiente del terreno natural no necesita ser fuerte para generar corrimiento lateral, pero para pendientes importantes (taludes que superen al ángulo de fricción interno) se deben hacer análisis de estabilidad, ya que los desplazamientos podrían ser más importantes debido a ese tipo de falla, o bien podrían generarse fenómenos como la falla de flujo, donde el corte permanente estático es superior a la resistencia residual no-drenada post-licuación. Según Youd et al. (2018) los desplazamientos del terreno por corrimiento lateral generalmente no superan unos pocos metros, excepto en suelos muy vulnerables solicitados por sismos de gran magnitud.

De los modelos utilizados en esta tesis, el modelo más sencillo y confiable resulta ser el de presiones laterales equivalentes (método japonés), ya que se ajusta correctamente a las deformaciones medidas en la cabeza del pilote que se cortó en la cepa N°8 del caso de estudio, donde se registró un desplazamiento hacia el mar de 3 m, y el modelo implementado en esta tesis determinó un desplazamiento de 3,1 m. El modelo de desplazamiento de flujos debe ser ajustado para que entregue resultados razonables. La literatura técnica permite disminuir la plastificación del suelo no licuado en un factor de 1/3, y la plastificación del suelo licuado en un factor de al menos 1/10.

Respecto a los ajustes indicados anteriormente, podemos decir que el ajuste de la costra es razonable, pues si lo comparamos con el empuje del diagrama de presiones, ajusta en un factor que corresponde a 1/3.

Hay otros efectos que no fueron considerados en esta tesis, pero que sí deben ser tomados en cuenta al momento de desarrollar los diseños de un muelle sobre pilotes hincados en la costa, donde exista material susceptible de licuar y gatillar corrimiento lateral. Uno de estos efectos tiene que ver con la distribución de rigideces, ya que en planta se puede producir torsión debido a una mala distribución de rigideces. Además, la zona de atraque (cabezo), sector con menor pendiente que no sufre los efectos del corrimiento lateral, actúa como un sistema de puntal que restringe el movimiento del muelle hacia el mar. Esto hace que las vigas y el tablero estén sometidos a esfuerzos de compresión no contemplados en el diseño. Los cálculos estructurales de los elementos de unión entre pilote y tablero evidenciaron una falla en la soldadura de la plancha capitel, debido al corte. Una vez producida la falla, existe una redistribución de esfuerzos debido al trabajo en cantiléver que desarrolla posteriormente el pilote, desapareciendo el corte y momento en la cabeza, aumentando los esfuerzos en la zona inferior del suelo licuado: El momento flector en al menos 2 veces y el corte 10 veces. Sin embargo, no existe evidencia física de la rotura del pilote en la zona licuada, pero claramente existe una posibilidad muy cierta de que haya sido sometido a grandes esfuerzos.

6.- RECOMENDACIONES

Del análisis bibliográfico realizado se pudo evidenciar que las bases de datos en general están desequilibradas, y están más pobladas de casos en los que se ha observado licuefacción que en los que no se ha producido.

Las historias de casos donde los suelos potencialmente licuables no se han licuado pueden ser tan importantes como las historias de casos donde se ha producido la licuefacción, y son particularmente importantes para establecer límites para la activación de la licuefacción y sus consecuencias con respecto a la magnitud, profundidad, esfuerzo cortante estático inicial, tamaño de grano, y plasticidad.

Como recomendación general se puede indicar que los estudios de campo futuros deberían prestar especial atención a estas lagunas de datos y esforzarse por llenarlas con historias de casos que influirían en el límite entre licuación y no licuación.

En particular, se pudo establecer que el muelle sur del puerto Coronel no tuvo daños producto de la licuación, a pesar de ser susceptibles a licuar, además no existe evidencia de haber desarrollado corrimiento lateral, situación que puede tener varias explicaciones:

- Estructuras asiladas sísmicamente.
- Pilotes fundados en suelo firme, la licuación se produjo en capas superiores.
- Tipo de fijación entre las cabezas de los pilotes con la superestructura.
- Espesor de suelo licuable menor a 5 m, condición indicada por la JRA necesaria para desarrollar corrimiento lateral, por lo que podría tratarse de una zona no susceptible de generar grandes corrimientos laterales.

Al diseñar fundaciones profundas en zonas susceptibles a licuar y gatillar corrimiento lateral, se deben tomar en cuenta todas las situaciones identificadas anteriormente para evitar se produzcan daños severos en pilotes y/o estructuras enterradas.

BIBLIOGRAFÍA

- Araujo W., Ledezma C., Macedo J. y Liu C. (2021). On the Prediction of Liquefaction-induced lateral spreading in large-magnitude subduction earthquakes, (paper).
- Ashford SA, Boulanger RW, Brandenberg SJ (2011). Recommended design practice for pile foundations in laterally spreading ground. Technical Report PEER 2011/04, Pacific Earthquake Engineering Research Center, Berkeley, USA.
- Brandenberg S. (2005), Behavior of Pile Foundations in Liquefied and Laterally Spreading Ground, Tesis Doctor of Philosophy in Civil and Environmental Engineering in the Office of Graduate Studies of the University of California Davis.
- Bray, J., Rollins, K., Hutchinson, T., Verdugo, R., Ledezma, C., Mylonakis, G., Assimaki, D., Montalva, G., Arduino, P., Olson, M., Kayen, R., Hashash, Y.M.A. and Candia, G. (2012). Effects of ground failure on buildings, ports, and industrial facilities. Earthquake Spectra 28, No. S1, 97–118.
- Brunet S, de la Llera JC, Jacobsen A, Miranda E, Meza C (2012). Performance of port facilities in southern Chile during the 27 February Maule Earthquake. Earthquake Spectra, 28(S1), S553–S579.
- De la Maza G., Williams N., Sáez E., Rollins K. y Ledezma C. (2015), Lateral spreading inducido por licuación en Lo Rojas, Coronel, estudio de terreno y modelo numérico. Obras y Proyectos 17, 106-115.
- Departamento de Ingeniera Civil Facultad de Ciencias Físicas y Matemáticas Universidad de Chile (2012), Mw=8.8 Terremoto en Chile 27 de febrero 2010.
- Dirección de Obras Portuarias MOP (2003), Proyecto Muelle Pesquero Artesanal Lo Rojas.
- Japan Road Association (2002). Design Specifications for Highway Bridges, Part V Seismic Design, Capítulo 8.
- JQ Ingeniería (2010), Informe Técnico 10010-01-ITE-002, Reconocimiento Suelo de Fundación Construcción Muelles Artesanales Caletas Lo Rojas y Lota Bajo.
- JQ Ingeniería (2014), Informe de campo, Sondajes Geotécnicos con medición de SPT, Puerto Coronel.

- Kavazanjian E., Andrade J., Arulmoli K.; Atwater B., Christian J., Green R., Kramer S., Aecom L., Mitchell J., Rathje E., Rice J. y Wang Y. (2016), State of the Art and Practice in the Assessment of Earthquake-Induced Soil Liquefaction and Its Consequences, a report of the National Academy of Sciences Engineering Medicine.
- Kawata Y, Nagamatsu S, Koshiyama K, Nishimura H, Abe S, Takatorige T, et al. Chapter 8 - Liquefaction With the Great East Japan Earthquake. The Fukushima and Tohoku Disaster, Suita, Japan: Elsevier Inc.; 2018, p. 147–59.
- Ko Y. y Lin Y. (2020), A Comparison of Simplified Modelling Approaches for Performance Assessment of Piles Subjected to Lateral Spreading of Liquefied Ground. Hindawi Geofluids, volumen 2020. Article ID 8812564, 16 pages.
- Ledezma C. y Tiznado J.C. (2017) Liquefactions effects on the northern Coronel pier during the 2010 Maule Chile earthquake. 16th World Conference on Earthquake Engineering, 16WCEE 2017, Santiago Chile, January 9th to 13th 2017.
- Norma Española UNE-EN 1998-5 (2018), Eurocódigo 8: Proyecto de estructuras sismorresistentes, Parte 5: Cimentaciones, estructuras de contención y aspectos geotécnicos.
- The Overseas Coastal Area Development Institute of Japan (2002), Technical Standards and Commentaries for Port and Harbour Facilities in Japan, Capítulo 4.1.8
- Tokimatsu K. y Asaka Y. (1998), Effects of Liquefaction-Induced Ground Displacements on Pile Performance in the 1995 Hyogoken-Nambu Earthquake. Special Issue of Soils and Foundations, Japanese Geotechnical Society, 163-177.
- Youd L. Application of MLR Procedure for Prediction of Liquefaction-Induced Lateral Spread Displacement. J Geotech Geoenvironmental Eng 2018;6:144.
- Youd T.L, Hansen C.M, Bartlett SF. Revised multilinear regression equations for prediction of lateral spread displacement. J Geotech Geoenvironmental Eng 2002;128:1007–17.

 Tyron, G.E. (2014) Evaluation of Current Empirical Methods for Predicting Lateral Spread-Induced Ground Deformations for Large Magnitude Earthquakes Using Maule Chile 2010 Case Histories. Master thesis, Department of Civil Environmental Engineering, Brigham Young University, USA.

ANEXOS

ANEXO A: CORRECCIÓN SPT Y MCA LICUACIÓN (SM-1)

					NFORME DE	GABINETE										
			COR	RECCION SP	T Y MEMOR	IA DE CALCU	JLO LICUA	CION								
				ANALIS	IS BOULANC	GER-IDRISS ((2014)									
Proyecto:	Caleta I	Lo Rojas														
Localidad:	Corone	I			$N_{60} = N \cdot C_E$	CB.CR.CS					$(N_1)_{60} = C_N$	N60				
Sondaie N°:	SM1	Marítimo	2		Factores de c	orrecciones de	al valor SPT r	nedido (N)			1,000 -11					
N Aqua:	0	mNRS	dato obtenido	del Infome	N	Índice de pen	etración está	ndar medido								
Cota boca:	-10	m N R S	dato obternido	dermionie	C ·	Corrección po	or confinamie	nto efectivo			C -	variable (0.4	-C17)			
Cota Doca.	-10				UN-	Coneccion pe	of commanie				ON-	variable (0,4	(ON(1,7)			
					C _E :	Corrección po	or energía de	l martinete			C _E =	0.75				
					C ·	Corrossión no	r díomotro d	ol condoio			C -	1				
					CB.	Corrección po	or longitud da				C _B =	voriable				
					GR.	conección pe	n longitud de	103 001103			GR=	variable				
					C _S :	Corrección m	nuestreadore	s c/sin revesti	miento		C _S =	1.2				
					m:	coef. inicial qu	Je debe conv	erger para de	terminar la co	rrección por co	onfinamiento					
	Profu	ndidad		Peso unitario	Presion			Indice de	(3) Indice		(3) Factores		(2)	(2) Iteración	(3) Factores	(3) Indice
NR do	(m)	Clasificación	esturado	vertical	Presion	Análisis de	nenetracion	nenetración	(3) m inicial	de corrección	(3)	(3) Dotorminoció	(3) Iteracion	de corrección	nenetración
intervaloe		r'	LISCS	estimado vt	efectiva a`v	vertical total	licuación	estándar	N	hasta la	Courses	Determinació	n de	convergencia	C (Table 2	(NL)
interveloc	desde	hasta	0.0.0.0.	(tonf/m ³)	(toof/m ²)	ov (tonf/m ²)	Nspt	modido N	1460	convergencia	-IN, COITIN	n de ∆(N1)60	(N1)60ce	con m inicial	OR (Tabla 2	(11)60
				(10111/111)	(10111/111)			Ineuluo IN	(corregido)		inicial		(11)0003	comminicial	(1))	(corregido)
	0.00	10.00	ML-MH	1.91	9.10	29.10	0	0								
1	10.00	10.45	MH	1.91	9.51	29.96	7	7	6	0.52	1.03	5.56	12.02	0.52	1.00	6
2	2 10.55	11.00	MH	1.91	10.01	31.01	6	6	5	0.53	1.00	5.56	10.95	0.53	1.00	5
3	3 11.00	11.45	SM	2.10	12.60	34.05	52	52	47	0.24	0.95	4.30	48.58	0.25	1.00	44
4	11.55	12.00	SM	2.10	13.20	35.20	78	78	70	0.12	0.97	4.30	72.20	0.13	1.00	68
5	5 12.00	12.45	SM	2.10	13.70	36.15	22	22	20	0.41	0.88	4.30	21.70	0.43	1.00	17
	6 12.55	13.00	SM	2.10	14.30	37.30	37	37	33	0.32	0.89	4.30	34.00	0.34	1.00	30
7	13.00	13.45	SM	2.10	14.80	38.25	6	6	5	0.55	0.81	4.30	8.65	0.56	1.00	4
8	13.55	14.00	SM	2.10	15.40	39.40	14	14	13	0.47	0.82	5.61	15.90	0.48	1.00	10
ç	14.00	14.45	SM	2.10	15.90	40.35	6	14	5	1.47	0.51	5.61	8.35	0.56	1.00	3
10	14.45	15.00	SM	2.10	16.50	41.50	100	100	90	0.05	0.98	2.51	90.28	0.05	1.00	88
11	15.00	15.45	SM	2.10	17.00	42.45	27	27	24	0.41	0.80	2.51	22.06	0.42	1.00	20
12	15 55	16.00	SM	2 10	17.60	43.60	15	15	14	0.50	0.75	2.51	12.68	0.51	1.00	10
12	16.00	16.45	SM	2.10	18.10	44.55	100	100	90	0.05	0.097	2.51	89.88	0.06	1.00	87
1/	17.00	17.45	SM	2.10	10.10	46.65	45	45	41	0.00	0.82	2.51	35.60	0.00	1.00	33
16	19.00	10 45	SM	2.10	20.20	40.00	100	100	41	0.01	0.02	2.51	90.20	0.05	1.00	07
16	10.00	10.45	SIVI	2.10	20.30	40.75	100	100	90	0.05	0.97	2.51	09.30	0.00	1.00	07
10	19.00	19.45	510	2.10	21.40	50.65	100	100	90	0.06	0.96	2.51	66.49	0.06	1.00	00
1/	20.00	20.45	SM	2.10	22.50	52.95	15	15	14	0.53	0.65	2.51	11.29	0.53	1.00	9
18	3 21.00	21.45	SM	2.10	23.60	55.05	34	34	31	0.41	0.70	2.51	24.03	0.41	1.00	22
18	22.00	22.45	SP-SM	2.10	24.70	57.15	/9	/9	/1	0.17	0.86	2.07	63.04	0.17	1.00	61
20	23.00	23.45	SP-SM	2.10	25.80	59.25	55	55	50	0.30	0.75	2.07	39.32	0.30	1.00	37
21	24.00	24.45	CH	2.10	26.90	61.35	51	51	46	0.29	0.75	5.51	39.96	0.30	1.00	34
22	2 25.00	25.45	CH	2.10	28.00	63.45	69	69	62	0.20	0.81	5.51	56.05	0.21	1.00	51
23	3 26.00	27.00						1	1							
	: Fango	, terreno	sin capacidad	de soporte, el	sistema confo	rmado por pilo	ote + martine	te, atraviesan	esta zona sol	o por efecto de	el peso propio					
	: Cota f	icha pilot	es verticales e	inclinados de	proyecto.											
	: Zona d	con IP≥7	, tiene compor	tamiento COM	O ARCILLA. S	e debe realizar	r un análisis c	le degradació	n cíclica "Cycl	lic Softening" p	ara verificar si	existirán o no p	roblemas dura	nte		
	un sísm	o. Para	esta zona (IP>	=7) No es válid	o el análisis de	e licuación CON	IO ARENAS									
NOTA:	(a) Hay	planos a	s built que indi	can que los pile	otes de Caleta	Lo Rojas tenía	an entre 16 y	17 m de ficha	a, los que se n	niden pasado (el Fango					
	(b) El si	uelo firm	e aparace a los	s 10 m de profi	undidad y com	o la ficha ha de	considerars	e a partir de e	sa profundida	d, los pilotes d	lebieron alcanz	ar los 26 y 27 r	n de profundid	ad total.		
	Con es	te análisi	s de licuación,	se determina d	que el suelo fin	me y NO LICU	ABLE apare	ce a los 16 m	de profundida	d, por lo tanto	los pilotes de (Caleta Lo Rojas	s tendrían 10 a	11 m embebid	os en suelo firr	ne
Modelo cons	truido c	on la inf	omación reco	pilada en los	siquientes de	ocumentos:										
- 10010-01-1	TE-002-V	B (Agos	to 2010)													
- Informe: 89	6947 (Die	tuc UC)	IG-2010-0364													
REFERENCIA	S:															
(1) Liquefaction	n Resist	ance of s	Soils: Summan	Report from t	he 1996 NCEE	R and 1998 N	CEER/NSE)	Norkshops								
on Evaluation	ofLique	afaction F	Pasistance of 9	Soile Journal o	f Geotechnical	and Geoenvir	onmental En	ineering/Octo	ber 2001							
(2) Technical	Standard	e and Co	mmentaries fo	Port and Hart	hour Eacilities i	n Janan The C	Wereese Co	pricering/Octo	0012001							
Development	ont Institut	and of	in		Soar raciilites l											
(2) CPT ord 5	DT Base	son Japa	u. ootion Triacesi	ng Brooduree	by DW D	ongor and I M	Idring Roos		M 14/01							
(a) CPT and S	ALE Det	u Liquei	acuon mygen	Ouelie Feile	, by K.W. BOU	angeranu I.M.	iuliss, rtépo	ILIN UCD/CG	IVI-14/UT	CCM 04/04						
(4) Evaluating	me Pote	nual tor L	iqueraction or	Cyclic Failure	or Slits and Cla	iys, by R.W. Bo	ouanger and	1.IVI. IORISS, RE	port Nº UCD/	CGIVI-04/01	T-11-0 (/)					
Nomenclatur	a (3):										i abla 2 (1)					
(IN1)60cs:	N1 al 60	J% energ	jia corregido p	or % de finos							longitud de la					
CRR M, sv':	Razón	de resist	encia ciclica								barra de	CR				
kσ:	Correct	ción por e	confinamiento								sondaje (m)					
CSR M, sv':	Razón	de estrés	cíclico								<3	0.75				
FS:	Factor	de Segu	FS = CRR M	, sv´/CSR M, s	sví						3a4	0.8				
rd:	Coefici	ente de r	educción de st	tress (0,4 <rd<1< td=""><td>1)</td><td></td><td></td><td></td><td></td><td></td><td>4 a 6</td><td>0.85</td><td></td><td></td><td></td><td></td></rd<1<>	1)						4 a 6	0.85				
											6 a 10	0.95				
											10 a 30	1			Página 1 de 2	

			CORR	ECCI A	INFORM ÓN SPT Y ME NÁLISIS BOU	ME DE GAB Emoria de Jlanger-II	INETE CALCULO L DRISS (2014)	ICUACIÓN											
Proyecto:	Caleta L	o Rojas																	
Localidad:	Coronel						CRR M, sv	= CRR _{M=7.5}	_{:σv′=1} .MS	F∙Kσ		Razón de i	resitencia ci	clica corregida					
Sondaje N°:	SM1	Maritim	0				Factores de	corrección que	se anlica	al CRR		calculado							
Clas. Sísmic	a del Sue	olo					1 4010100 40	concoción que	oo apiicai		M=7.5: sv =1*	ourouldu.							
zona sismica	3						MSF:	Factor de escal	a de la mag	nitud real		MSF:=	variable						
amax (ao)=	0.5	g					Ko:	Corrección por	no linealida	d entre pre	siones de	=Κσ:=	variable						
1 atm=	1.033	kg/cm ²																	
M=	8.8																		
MSF=	variable						CSR M, sv	= 0,65 ·(σv)	σv) · (a	l _{máx} ∕g) ∙l	rd	Razón de (de estrés cio	lico					
	: Ingresa	ar dato																	
N0 -1-	(m	n)	(4)		Comportamie	(2)	(3) Condición	(2)	(2) MOE			(0) 1	(2) 1-	(3) CRR M,				(3) CSR M	(3) FS = CRR
intervalos		í	Contenido	IP	nto Suelos	(3) (N1)60cs	licuación	CRR	(3) IVISE max	(3) MSF	(3) Cσ=	(3) KO	(3) KG (mínimo)=	av.	(3) α(z)	(3) β(z)	(3) rd	σv'	M, σν ⁻ / CSR M,
11101100103	desde	hasta	de finos		Finos	(11)0003	(N1)60cs	CICIC _{M=7,5;ov'=1}	IIIdA			(ioinidia)=	((())=	(corregido)				(solicitante)	σv
(0.00	10.00																	
1	10.00	10.45	76	21	Como Arcillas														
2	10.55	11.00	76	21	Como Arcillas														
3	11.00	11.45	19	NP	Como Arenas	48.6	no licuable	no licuable	2.20	0.56	no aplica	no aplica	no aplica	no licuable	-0.817	0.091	0.99	0.87	no licuable
4	11.55	12.00	19	NP	Como Arenas	21.7	no licuable 21.7	no licuable	2.20	0.56	no aplica	no aplica	no aplica	0 173	-0.869	0.097	0.98	0.85	no licuable
6	12.55	13.00	19	NP	Como Arenas	34.0	no licuable	no licuable	2.20	0.56	0.25	0.91	0.91	no licuable	-0.965	0.107	0.98	0.83	no licuable
7	13.00	13.45	19	NP	Como Arenas	8.7	8.7	0.109	1.17	0.94	0.09	0.97	0.97	0.099	-1.008	0.112	0.98	0.82	0.12
8	13.55	14.00	49	8	Como Arcillas														
9	14.00	14.45	49	8	Como Arcillas		F 11	F 11			E.			F 11	1.150	0.400	0.07	0.70	F 11
10	14.45	15.00	13		Como Arenas	90.3	no licuable	no licuable	2.20	0.56	no aplica	no aplica	no aplica	no licuable	-1.156	0.128	0.97	0.79	no licuable
12	15.55	16.00	13	NP	Como Arenas	12.7	12.7	0.138	1.25	0.91	0.10	0.94	0.94	0.118	-1.251	0.138	0.97	0.78	0.15
13	16.00	16.45	13	NP	Como Arenas	89.9	no licuable	no licuable	2.20	0.56	no aplica	no aplica	no aplica	no licuable	-1.293	0.143	0.96	0.77	no licuable
14	17.00	17.45	13	NP	Como Arenas	35.6	no licuable	no licuable	2.20	0.56	0.27	0.82	0.82	no licuable	-1.385	0.153	0.96	0.76	no licuable
15	18.00	18.45	13	NP	Como Arenas	89.4	no licuable	no licuable	2.20	0.56	no aplica	no aplica	no aplica	no licuable	-1.474	0.162	0.95	0.74	no licuable
16	19.00	19.45	13	NP	Como Arenas	88.5	no licuable	no licuable	2.20	0.56	no aplica	no aplica	no aplica	no licuable	-1.560	0.171	0.95	0.73	no licuable
18	20.00	21.45	13	NP	Como Arenas	24.0	24.0	0.127	1.67	0.92	0.10	0.92	0.92	0.108	-1.719	0.179	0.94	0.72	0.15
19	22.00	22.45	12	NP	Como Arenas	63.0	no licuable	no licuable	2.20	0.56	no aplica	no aplica	no aplica	no licuable	-1.791	0.195	0.92	0.70	no licuable
20	23.00	23.45	12	NP	Como Arenas	39.3	no licuable	no licuable	2.20	0.56	no aplica	no aplica	no aplica	no licuable	-1.857	0.201	0.92	0.68	no licuable
21	24.00	24.45	93	43	Como Arcillas														
2	25.00	25.45	93	43	Como Arcillas														sup po licushle
	: Fango.	terreno	sin capacid	ad de	soporte, el sist	tema conform	l ado por pilote	+ martinete, atr	aviesan esta	a zona solo	por efec	to del peso	propio						Sup no licuable
	: Cota fic : Zona co un sísmo	cha pilot on IP≥7 o. Para (es verticales , tiene comp esta zona (IF	s e inc ortam >=7)	linados de pro niento COMO A No es válido e	vecto. <mark>RCILLA</mark> . Se I análisis de li	debe realizar u cuación COMC	n análisis de deg) ARENAS.	radación cí	clica "Cycl	ic Softeni	ng" para ve	rificar si exis	irán o no probl	emas dur	ante			
NOTA:	(a) Hay p	planos a	s built que ir	ndicar	que los pilotes	de Caleta Lo	Rojas tenían	entre 1 6 y 17 m	de ficha, lo	s que se m	niden pas	ado el Fang	0		11.11				
	Con este	e análisi	s de licuació	on, se	determina que	el suelo firme	9 Y NO LICUAI	BLE aparece a lo	os 16 m de j	profundida	d, por lo t	anto los pilo	otes de Cale	a Lo Rojas ten	drian 10	a 11 m e	mbebio	dos en suelo fir	me
Modelo con	struido co	on la in	fomación re	ecopi	lada en los si	auientes doo	umentos:												
- 10010-01-1	TE-002-V	B (Agos	to 2010)																
- Informe: 89	6947 (Dic	tuc UC)	IG-2010-03	364															
REFERENCI	AS:		0-3-0				and 4000 NO												
(1) Liqueractio	n of Lique	faction	Solis: Summ Resistance /	of Soi	le lournal of G	eotechnical a	nd Geoenviron	mental Engineer	ing/Octobe	2001									
(2) Technical	Standards	s and Co	ommentaries	s for P	Port and Harbou	r Facilities in	Japan. The Ov	erseas Coastal /	Area	2001									
Developme	nt Institute	of Jap	an.																
(3) CPT and S	SPT Base	d Lique	faction Trigg	ering	Procedures, by	y R.W. Boular	nger and I.M. Io	driss, Report N°	UCD/CGM-	14/01									
(4) Evaluating	the Poter	ntial for I	liquefaction	or Cy	clic Failure of S	Silts and Clays	s, by R.W. Bou	langer and I.M. I	driss, Repo	rt N° UCD/	CGM-04/	01		T.11.0(4)					
Nomenclatur	ra (3):	% do or	eraía corre	aido n	or % de finos									Tabla 2 (1)		-			
CRR M. sv':	Razón d	e resist	encia cíclica	giuo p	01 /0 00 11103									barra de	CR				
ko:	Correcci	ión por o	confinamient	to										sondaje (m)		İ			
CSR M, sv':	Razón d	e estrés	cíclico											<3	0.75				
FS:	Factor d	e Segu	FS = CRR	M, sv	CSR M, sv									3 a 4	0.8	{			
ra:	Coeticie	nte de r	eaucción de	stres	s (0,4 <rd<1)< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>4 a 6 6 a 10</td><td>0.85</td><td>-</td><td></td><td></td><td></td></rd<1)<>									4 a 6 6 a 10	0.85	-			
														10 a 30	1	ł		Página 2 de 2	

Provide Construction Provide Construction Construction Prove calabit: Construction No.11 × 50 × 50 × 50 × 50 × 50 × 50 × 50 ×								_									
Control Number of the set				000				E									
Properties Properies Properties Properti				COR				CULU LIC	JUACION								
Instantial is convert Number Num	Provecto:	Puerto	Corone	1	ANALIS	IS BOOLAI	GENIDRIG	3 (2014)									
Part definition Production Pr	Localidad:	Coron				N = N C						(NL) = C	N				
Particle Production Productio	Condeia Nº	COTON	CI Marítim				E.CB.CR.CS	del velez C	DT medide (ND.		$(N_1)_{60} = C_N$	IN ₆₀				
N. Augus 0 m. N. R. Class Desines definition (Calcelones address metabolisme metabolisme definition (Calcelones))	Sondaje N :	3P1-4	warum	0		Factores de	correcciones	der valor a	PT medido (N)							
Consistion Current of proceeding or contaminants details Current of proceeding or contaminants Current of proceeding or contaminants details Current of proceeding or contaminants details Current of proceeding or contaminants Current of proceding or contaminants	N Aqua:	0	mNR	dato obt	enido del Infon	r N [.]	Índice de ne	netración e	stándar medi	do							
N G Correction por empire and matches	Cota boca:	-12.8	m.N.R.	S		CN:	Corrección p	or confinan	niento efectiv	0		C _N =	variable (0.4<0	2N<1.7)			
Leg Leg <thleg< th=""> <thleg< th=""> <thleg< th=""></thleg<></thleg<></thleg<>						0.	0		4.4			0	0.75				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						CE:	Correccion p	or energia	dei martinete			C _E =	0.75				
M G_c Correction per transplate de las tamas C_c= Numble 1 M G_c Correction mestadosco chin revealmento C_c= 12 12 M G_c Correction mestadosco chin revealmento C_c= 12 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 1 0						C _R :	Corrección p	or díametro	o del sondaje			C _R =	1				
Poly C_g C_g C_g 12 N 0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>C_R:</td><td>Corrección p</td><td>or longitud</td><td>de las barras</td><td></td><td></td><td>C_R=</td><td>variable</td><td></td><td></td><td></td><td></td></td<>						C _R :	Corrección p	or longitud	de las barras			C _R =	variable				
Image Image <th< td=""><td></td><td></td><td></td><td></td><td></td><td>C_S:</td><td>Corrección r</td><td>nuestreado</td><td>res c/sin reve</td><td>estimiento</td><td></td><td>C_S=</td><td>1.2</td><td></td><td></td><td></td><td></td></th<>						C _S :	Corrección r	nuestreado	res c/sin reve	estimiento		C _S =	1.2				
N - 6 tremain Periodulisat (status) Descurisation status Pressure status (vinceting) Pressure (vinceting) Pressure						m:	coef. inicial q	ue debe co	onverger para	determinar la	a corrección po	r confinamiento)				
N • do urter values (m) (methy) USLS: (modify) (manual (modify) (modify) (modify) (Profu	indidad		Peso unitario	Presion		Análisis	Indice de	(3) Indice		(3) Factores			(3) Iteración		(3) Indice
International data in the basis Loss of the standard o	Nº de	(m)	Clas.	saturado	vertical	Presion	de	penetracion	penetración	(3) m inicial	de corrección	(3)	(3)	hasta	(3) Factores de	penetración
ubbox mixed mixed <th< td=""><td>intervalos</td><td>-</td><td>hanta</td><td>0.5.0.5</td><td>estimado γt</td><td>efectiva σ`v</td><td>venical total</td><td>licuación</td><td>estándar</td><td>N₆₀</td><td>nasta la</td><td>C_{N, con m}</td><td>Determinacion</td><td>Determinacion</td><td>convergencia</td><td>corrección C_R</td><td>(N₁)₆₀</td></th<>	intervalos	-	hanta	0.5.0.5	estimado γt	efectiva σ`v	venical total	licuación	estándar	N ₆₀	nasta la	C _{N, con m}	Determinacion	Determinacion	convergencia	corrección C _R	(N ₁) ₆₀
0 0.00 4.40 M. 4.45 Image: constraint of the second		desde	nasta	•	(tonf/m ³)	(tonf/m ²)	ov (ioni/m)	Nspt	medido N	(corregido)	convergencia	inicial	de A(NT)00	de (NT)00CS	con m inicial	(Tabla 2 (1))	(corregido)
1 4.00 4.43 84.0 21.0 4.00 22.15 1.44 4.30 22.60 0.41 1.00 11 2 2.60 5.45 5.87 2.10 7.10 25.35 5.00 6.44 4.90 2.22 1.12 0.00 57.44 0.20 1.00 57.44 4 7.00 7.45 S.M 2.10 8.20 2.84 7.67 7.70 7.71 1.22 2.74 3.75 7.74 0.22 1.10 0.00 4.75 5.80 7.74 0.22 0.12 1.00 0.77 7.45 S.M 2.21 1.00 1.02 0.00 4.30 1.40 0.28 1.00<	0	0.00	4.00	ML-MH	1.91	3.64	20.44	0	0								
1 2 5.00 5.43 5.00 5.43 5.00 5.43 5.00 5.744 0.22 1.10 0.00 5.744 0.22 1.00 0.574 4 7.00 7.45 5.84 2.10 5.30 2.845 78 78 70 0.11 1.02 4.30 76.05 0.11 1.00 77 6 6.00 6.84 5.84 2.10 1.04.0 32.26 1.21 1.12 0.00 4.30 1.400 32.28 1.00 0.01 1.00	1	4.00	4.45	SN	2.10	4.90	22.15	16	16	14	0.41	1.34	4.30	23.60	0.41	1.00	19
1 3 6.00 6.45 SP 2.10 7.10 26.35 600 654 0.20 1.07 0.00 67.84 0.20 1.00 0.71 6 8.00 8.45 SP 2.10 9.30 30.55 47 47 42 0.28 1.00 0.43 1.00 0.41 7 9.00 9.45 SM 2.40 1.00 0.40 32.65 1.21 12 11 0.49 0.88 4.30 1.450 0.49 1.00 0.41 8 10.05 0.16 1.66 6.43 0.05 1.00 0.49 1.00<	2	5.00	5.45	SP	2.10	6.00	24.25	54	54	49	0.22	1.12	0.00	54.39	0.22	1.00	54
1 4 7.00 7.61 SM 2.10 8.20 2.84.5 78 70 0.11 1.02 4.30 70.05 0.11 1.00 77 6 8.00 8.46 SP 2.00 4.317 0.228 1.00 0.04 4.317 0.28 1.00 0.04 1 10.00 1.16 1.62 2.84.1 10.00 0.98 4.30 1.450 0.428 1.00 11 1 10.00 1.15 1.64 6.47 30.05 100 0		6.00	6.45	SP	2.10	7.10	26.35	60	60	54	0.20	1.07	0.00	57.84	0.20	1.00	58
L 6 8.00 8.45 SP 2.10 9.30 30.05 47 47 42 0.22 1.02 0.00 43.17 0.28 1.00 41 8 10.00 10.38 C.L 16.06 6.23 29.41 100 100 0 49 4.00 4.9 4.9 4.9 4.9 1.00 11 18 10.00 10.38 C.L 1.60 6.28 33.64 100 100 0 - <t< td=""><td>4</td><td>7.00</td><td>7.45</td><td>SM</td><td>2.10</td><td>8.20</td><td>28.45</td><td>78</td><td>78</td><td>70</td><td>0.11</td><td>1.02</td><td>4.30</td><td>76.05</td><td>0.11</td><td>1.00</td><td>72</td></t<>	4	7.00	7.45	SM	2.10	8.20	28.45	78	78	70	0.11	1.02	4.30	76.05	0.11	1.00	72
1 1 0.00 1.38 C.1 1.00 1 8 10.00 1.38 C.1 1.60 1.00 1 8 10.00 1.00 0 0 0 0 0 10 10.00 0.1 1.00 0 0 0 0 0 0 11 11.00 1.00 0		8.00	8.45	SP	2.10	9.30	30.55	47	47	42	0.28	1.02	0.00	43.17	0.28	1.00	43
B 10.00 10.00 00 0 B 10.00 10.02 10.02 10.02 10.02 10 11.00 11.11 10.11 0.11 <td></td> <td>9.00</td> <td>9.45</td> <td>SN OI</td> <td>2.10</td> <td>10.40</td> <td>32.65</td> <td>12</td> <td>12</td> <td>11</td> <td>0.49</td> <td>0.98</td> <td>4.30</td> <td>14.90</td> <td>0.49</td> <td>1.00</td> <td>11</td>		9.00	9.45	SN OI	2.10	10.40	32.65	12	12	11	0.49	0.98	4.30	14.90	0.49	1.00	11
B 10:30 10:10 10:00 10:00 10:00 00 10:11 11:60 CL 16:00 6:68 30:46 10:00 0 1 11:15 11:60 CL 16:00 6:68 30:46 10:00 0 1 11:15 11:16 CL 16:00 7:25 32:13 10:00 0 1 1 1:00 1:00 1 1:00 1:00 1 1:00		10.00	10.38		1.60	6.23	29.41	100	100	0							
International state International state International state International state International state International state International state Intenal state Interal state	10	11 00	11 15		1.60	6.69	30.05	100	100	0							
12 12.00 12.08 CL 1.80 7.26 32.13 100 100 0 13 13.00 14.00 15.00 1	11	11.50	11.60	CL	1.00	6.96	31.36	100	100	0							
13 13.00 14.00 14.00 14 14.00 15.00 15.00 15.00 15 15.00 15.00 15.00 15.00 15.00 16 15.00 15.00 15.00 15.00 15.00 15.00 17 17.00 18.00 15.00 15.00 15.00 15.00 15.00 18 18.00 22.00<	12	12.00	12.08	CL	1.60	7.25	32.13	100	100	0							1
14 14.00 15.00 Image: construction of the second secon	13	13.00	14.00				1		1								
15 15.00 15	14	14.00	15.00												ĺ		
16 16.00 17.00 18.00 19.00 10.00 10.00 10.00 10	15	15.00	16.00														
17 17.00 18.00 19	16	6 16.00	17.00														
18 18.00 19.00 10	17	17.00	18.00														
19 19.00 20.000 21.000 21.00 20.000 21.00 20.000 21.00 20.000 21.00 20.000 21.00 20.000 21.00 20.000 21.00 20.000 21.000 21.000 20.000 21.000 20.000 21.000 20.000 21.000 20.000 21.000 20.000 21.000 20.000 21.000 20.000 21.000 20.000 21.000 20.000 21.000 20.000 21.000 20.000 21.000 20.000 21.000 21.000 20.000 21.000 20.000 21.000 21.000 20.000 21.0000 21.0000 21.0000 21.0000 21.0000 21.0000 21.0000 21.00000 21.00000 21.00000 21.000000 21.0000000 21.00	18	8 18.00	19.00			<u> </u>			<u> </u>								
20 20.00 21.00 20.00 21.00 20.00 21.00 20.00 21.00 20.00 21.00 20.00 21.00 20.00 21.00 20.00 21.00 20.00 21.00 20.00 21.00 20.00 21.00 20.00 21.00 20.00 21.00 20.00 21.00 20.00 21.00 20.00 21.00 20.00 21.00 2	19	19.00	20.00														
1 From	20	20.00	22.00														
Fango, terreno sin capacidad de soporte, el sistema conformado por pilote + marinete, atraviesan esta zona solo por elcto del peso propio Analogia con muelo Lo Rojas (pilotes con 16 y 17 m de ficha en suelo firme). Se determina que desde los 5.0 m el suelo es NO LICUABLE. Zona con IP2-7, tiene comportamiento COMO ARCILLA. Se debe realizar un análisis de degradación cíclica "Cyclic Softening" para verificar si existirán o no problemas durante un sismo. Para asta zona (IP2-7) No es válido el análisis de licuación COMO ARCINAS. NOTA: (a) Hay planos as built que indican que los pilotes de Caleta Lo Rojas tenina entre 1 6 y 17 m de ficha, los que se miden pasado el fango (b) En el Muelle Sur del Puerto Cornel el suelo firma eparace a los 4 m de profundidad, no se tiene información sobre la longidu de los pilotes. Modelo construido con la información recopilada en los siguientes documentos: (i) De la Maza, C. startal spreading inducido por licuación en Lo Rojas, Coronel, estudio de terreno y modelo numérico. Obras y Proyectos 17, 106-115 (i) De La lozza, C. et al (2015). Lateral spreading inducido por licuación en Lo Rojas, Coronel, estudio de terreno y modelo numérico. Obras y Proyectos 17, 106-115 (i) C. Ledezma, J.C. Tranado (paper N*2200) Liquefactions effects on the northern Coronel pier during the 2010 Maule Chile earthquake. 16th World Conference on Earthquake Engineering, 16WCEE 2017, Santiago Chile. (1) Liquefaction Resistance of Soils. Journal of Geotechnical and Geoernironmential Engineering/October 2001 (i) Centonetal stratadardis and Clays, by R.W. Boulanger and I.M. Idriss, Report N* UCD/CGM-04/01 (i) CPT and SPT Based Liquefaction Triggering Procedures, by R.W. Boulanger and I.M. Idriss, Report N* UCD/C	21	21.00	22.00														
Fango, terreno sin capacidad de soporte, el sistema conformado por pilote + martinete, atraviesan esta zona solo por efecto del peso propio Analogia con muello Lo Rojas (pilotes con 16 y 17 m de ficha en suelo firme). Se determina que desde los 5.0 m el suelo es NO LICUABLE. Con con IP37, tiene comportamiento COMO ARCILLA. Se debe realizar un analisis de degradación ciclica "cyclic Softering" para verificar si existirán o no problemas durante un sismo. Para esta zona (IP>=7) No es valido el análisis de decata Los Conjos ternian entre 1 S y 17 m de ficha, los que se miden pasado el fango (b) En el Muelle Sur del Puerto Coronel el suelo firme aparace a los 4 m de profundidad, no se tiene información sobre la longitud de los pilotes. En el sondaje SPT-4, además del fango aparece solo una capa de suelo licuable a los 9 m de profundidad Modelo construido con la información recopitada en los Siguientes documentos: (i) De la Maza, G. et al (2015). Lateral spreading inducido por licuación en Lo Rojas, Coronel, estudio de terreno y modelo numérico. Obras y Proyectos 17, 106-115 (i) C. Ledezam J.C. Tizrado (paper N*2200) Liquefactions effects on the northem Coronel pier during the 2010 Maule Chile earthquake. 16th World Conference on Earthquake Engineering, 16WCEE 2017, Santiago Chile. REFERENCIAS: (1) Liquefaction Resistance of Soils. Journal of Geotechnicial and Geoenvironmental Engineering/October 2001 (2) Technical Standards and Commentaries for Port and Harbour Facilities in Japan. (3) CPT and SPT Based Liquefactions Tiggering Procedures, by R.W. Boulanger and I.M. Idriss, Report N° UCD/CGM-04/01 Momenclature (3) CPT and SPT Based Liquefaction or Cyclic Failure of Sits and Clays, by R.W. Boulanger and I.M. Idriss, Report N° UCD/CGM-04/01 Momenclature (3) CPT and SPT Based Liquefaction or Cyclic Failure of Sits and Clays, by R.W. Boulanger and I.M. Idriss, Report N° UCD/CGM-04/01 Momenclature (3) CPT (Are Site Area To Casita Area Desis		1															
Analogia con muello Lo Rojas (pilotes con 16 y 17 m de ficha en suelo firme). Se determina que desde los 5.0 m el suelo es NO LICUABLE. Zona con IP>7, tiene comportamiento COMO ARCILLA. Se debe realizar un anàlisis de degradación cicica "Cyclic Softening" para verificar si existirán o no problemas durante in sismo. Para esta zona (IP>-7) No es válido el análisis de licuación COMO ARENAS. NOTA: (a) Hay planos as built que indican que los pilotes de Caleta Lo Rojas tenían entre 16 y 17 m de ficha, los que se miden pasado el fango (b) En el Muelle SU del Puerto Coronel el suelo firme aparace a los 4 m de profundidad, no se tiene información sobre la longitud de los pilotes. En el sondaje SPT-4, además del fango aparece solo una capa de suelo licuable a los 9 m de profundidad Modelo construido con la información recopilada en los siguientes documentos: (i) De la Maza, G. et al (2015). Lateral spreading inducido por licuación en Lo Rojas, Coronel, estudio de terreno y modelo numérico. Obras y Proyectos 17, 106-115 (i) C. Ledezma, J.C. Trando (paper N'2200) Liquefactions effects on the northern Coronel pier during the 2010 Mauie Chile earthquake. 16th World Conference on Earthquake Engineering, 16WCEE 2017, Santiago Chile. REFERENCIAS: (1) Liquefaction Resistance of Soils. Journal of Geotechnical and Geoenvironmental Engineering/October 2001 (2) Cert and Fila Basel Liquefaction Trigging Procedures, by R.W. Boulanger and I.M. Idriss, Report N' UCD/CGM-04/01 (4) Evaluating the Potential for Liquefaction or Cyclic Failure of Silts and Clays, by R.W. Boulanger and I.M. Idriss, Report N' UCD/CGM-04/01 (4) Evaluating the Potential for Liquefaction or Cyclic Failure of Silts and Clays, by R.W. Boulanger and I.M. Idriss, Report N' UCD/CGM-04/01 (5) CPT and SP is accol Liquefaction or Cyclic Failure of Silts and Clays, by R.W. Boulanger and I.M. Idriss, Report N' UCD/CGM-04/01 (5) CPT and SP is accol Liquefaction resistance de Soltes and Clays, by R.W. Boulanger and		: Fang	o, terren	o sin cap	acidad de sop	orte, el sister	na conformad	o por pilote	+ martinete	, atraviesan e	sta zona solo p	or efecto del p	eso propio				
Zona con IP-27, tiene comportamiento COMO ARCILLA. Se debe realizar un análisis de degradación ciclica "Cyclic Softening" para verificar si existirán o no problemas durante un sismo. Para esta zona (IP-27, tiene comportamiento COMO ARCINAS. NOTA: (a) Hay planos as built que indican que los pilotes de Caleta Lo Rojas tenían entre 1 6 y 17 m de ficha, los que se miden pasado el fango (b) En el Muelle Sur del Puerto Coronel el suelo firme aparace a los 4 m de profundidad, no se tenien información sobre la longitud de los pilotes. En el sondaje SPT-4, además de lango aparece a los 4 evelo licuable a los 9 m de profundidad Modelo construido con la información recopilada en los siguientes documentos: (i) De la Maza, C. stardis spreading inducido por licuación en Lo Rojas, Coronel, estudio de terreno y modelo numérico. Obras y Proyectos 17, 106-115 (i) De la Maza, C. ser al (2015). Lateral spreading inducido por licuación en Lo Rojas, Coronel pier during the 2010 Maule Chile earthquake. 16th World Conference on Earthquake Engineering, 16WCEE 2017, Santiago Chile. REFERENCIAS: (1) Liquefaction Resistance of Solis. Journal of Geotechnical and Geotechnical an		: Analo	gia con	muello L	o Rojas (pilotes	s con 16 y 17	m de ficha ei	n suelo firm	e). Se deterr	nina que deso	de los 5.0 m el	suelo es NO LI	CUABLE.				
In siston, Para esta zona (IP>=7) No es valido el análisis de licuación COMO ARENAS. Image: Comparison of Comp		: Zona	con IP≥	7, tiene o	comportamiento	COMO ARC	CILLA. Se deb	be realizar u	in análisis de	degradación	cíclica "Cyclic	Softening [*] para	verificar si exist	irán o no problei	nas durante		
NOTA: (a) Hay planos as built que indican que los pilotes de Caleta Lo Rojas tenian entre 16 y 17 md ficha, los que se miden pasado el fango (b) En el Muelle SU del Pueto Coronel el suelo lime aparace a los 4 m de profundidad, no se tiene información sobre la longitud de los pilotes. (c) En el Suelle SU del Pueto Coronel el suelo lime aparace a los 4 m de profundidad (b) En el Muelle SU del Pueto Coronel el suelo licuable a los 9 m de profundidad (c) En el Suello Bardona (c) Sugientes documentos: (c) En el Suello Resistance of Suis: (i) De la Maza, G. et al (2015). Lateral spreading inducido por licuación en Lo Rojas, Coronel, estudio de terreno y modelo numérico. Obras y Proyectos 17, 106-115 (c) En el Suello Resistance of Soils: Summary Report from the 1996 NCEER and 1988 NCEER/NSF Workhops (n) Evuleración Resistance of Soils: Journal of Geotechnical and Geoenvironmental Engineering/Cotober 2001 (c) Erando liquefaction Resistance of Soils. Journal of Geotechnical and Geoenvironmental Engineering/Cotober 2001 (2) CET and SPT Based Liquefaction Trigging Procedures, by R.W. Boulanger and I.M. Idriss, Report Nº UCD/CGM-04/01 (c) Eratola 190 Nomenclature (3): (c) Crercición por confiramiento (c) Resistance of Soils: Summary Report from the 1996 NCEER and 1988 NCEER/NSF Workhold (k) Evularing the Potential for Liquefaction Trigging Procedures, by R.W. Boulanger and I.M. Idriss, Report Nº UCD/CGM-04/01 (c) Eratola 190 (k) Crarcición por confiramiento (c) Resistance of Soils: Summary Report N° UCD/CGM-04/01 (c) Erato 190 (k) Cor		un sís	mo. Para	a esta zo	na (IP>=7) No e	es válido el a	nálisis de licua	ción COM	DARENAS.								
(b) En el Muelle Sur del Fuendo Corone el suelo furme aparace a los 4 m de profundidad, no sobre la longitud de los pilotes. Image: Correction of the corone of the suelo furme aparace a los 4 m de profundidad, no sobre la longitud de los pilotes. Modelo construido con la información recopilada en los siguientes documentos: Image: Correction profuentes and transportantes and transportensportes and transportensportes and transportantes and transpor	NOTA:	(a) Hay	/ planos	as built o	que indican que	los pilotes d	e Caleta Lo R	ojas tenian	entre 16y1	7 m de ficha,	los que se mic	len pasado el f	ango				
Chr is solvage of Pa, Jackins for Hayd grantes sour es have have a source hayd grantes sources have a source have have a source have have a source have have a source have a source have a source have a source have have have a source have hav		(D) En	el Muell		Puerto Corone	el suelo firm	ne aparace a l	os 4 m de	protundidad,	no se tiene in m do profund	formacion sobi	re la longitud de	e los pilotes.				
In De la Maza, G. et al (2015). Lateral spreading inducido por licuación en Lo Rojas, Coronel, estudio de terreno y modelo numérico. Obras y Proyectos 17, 106-115 Image: Construction of the information of the angle inducido por licuación en Lo Rojas, Coronel, estudio de terreno y modelo numérico. Obras y Proyectos 17, 106-115 (i) De la Maza, G. et al (2015). Lateral spreading inducido por licuación en Lo Rojas, Coronel, estudio de terreno y modelo numérico. Obras y Proyectos 17, 106-115 Image: Construction of the information of the angle inducido por licuación en Lo Rojas, Coronel, estudio de terreno y modelo numérico. Obras y Proyectos 17, 106-115 (i) Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1988 NCEER/NSF Workshops Image: Construction of Liquefaction Resistance of Soils. Journal of Geotechnical and Geoenvironmental Engineering/October 2001 (2) Terchnical Standards and Commentaries for Port and Harbour Facilities in Japan. The Overseas Coastal Area Image: Construction of Columentaries for Port and Harbour Facilities in Japan. The Overseas Coastal Area (3) CPT and SPT Based Liquefaction Trigging Procedures, by R.W. Boulanger and I.M. Idriss, Report N* UCD/CGM-04/01 Image: Construction of Columentaries for Port and Harbour Facilities in Japan. The Overseas Coastal Area (b) CPT and SPT Based Liquefaction Trigging Procedures, by R.W. Boulanger and I.M. Idriss, Report N* UCD/CGM-04/01 Image: Construction of Columentaries for Port and Patience of Standards and Columentaries for Port and Harbour Facilities and Clays, by R.W. Boulanger and I.M. Idriss, Report N* UCD/CGM-04/01 (M1)60cs: M1 al 60% energia coregiado por % de finos Image: Cor	Modelo con	etruido	con la	or 1-4, a infomac	ión reconilada	jo aparece si en los sigu	ientes docu	nentos.	Jable a los 9	n de prorund	laad						
(i) C. Ledzma, J.C. Tiznado (paper N*2200) Liquefactions effects on the northern Coronel pier during the 2010 Maule Chile earthquake. 16th World Conference on Earthquake Engineering, 16WCEE 2017, Santago Chile. REFERENCIAS: (i) Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops Interference on Earthquake Engineering, 16WCEE 2017, Santago Chile. (i) Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops Interference on Earthquake Engineering, 16WCEE 2017, Santago Chile. (i) Liquefaction Resistance of Soils: Journal of Geotechnical and Georenvironmental Engineering/October 2001 Interference on Earthquake Engineering, 16WCEE 2017, Santago Chile. (ii) Liquefaction Institute of Japan. Development Institute of Japan. Interference on Earthquake. 16th World Conference on Earthquake Engineering, 16WCEE 2017, Santago Chile. (iii) C. Ledzering The South Conference of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops Interference on Earthquake Engineering, 16WCEE 2017, Santago Chile. (iii) Liquefaction of Liquefaction of Cyclic Failure of Sitts and Geotechnical and Geotechnical Area Development Institute of Japan. Interference on Earthquake. 16th World Conference on Earthquake. (iii) CPT and SPT Based Liquefaction or Cyclic Failure of Sitts and Clays, by R.W. Boulanger and I.M. Idriss, Report N* UCD/CGM-04/01 Interference on Conference on Cyclic Failure of Sitts and Clays, by R.W. Boulanger and I.M. Idriss, Report N* UCD/CGM-04/01 Interference CR Interference on Cyclic Fail	(i) De la Maza	Geta	al (2015)	l ateral	spreading indu	cido nor licus	ición en Lo Ro	nias Coron	el estudio de	terreno v mo	delo numérico	Obras v Prove	ctos 17 106-11	5			
REFERENCIAS: Image: Constraint of the table of	(ii) C. Ledezn	na, J.C.	Tiznado	(paper N	V°2200) Liquefa	actions effect	s on the north	ern Corone	l pier during t	he 2010 Mau	le Chile earthq	uake. 16th Wor	ld Conference of	n Earthquake En	gineering, 16W	CEE 2017, Santi	ago Chile.
(1) Liquefaction Resistance of Soils: Summary Report from the 1968 NCEER.NSF Workshops on Evaluation of Liquefaction Resistance of Soils. Journal of Geotechnical and Geoenvironmental Engineering/October 2001	REFERENCI	AS:															
on Evaluation of Liquefaction Resistance of Solts. Journal of Geotechnical and Geoenvironmental Engineering/Cotboer 2001 Image: Control of Liquefaction Resistance of Solts. Journal of Geotechnical and Geoenvironmental Engineering/Cotboer 2001 (2) Technical Standards and Commentaries for Port and Harbour Facilities in Japan. The Overseas Coastal Area Image: Control of Contro of Contro of Control of Control of Control of Control of	(1) Liquefacti	on Resi	stance o	of Soils: S	Summary Repo	rt from the 19	96 NCEER a	nd 1998 NO	CEER/NSF W	/orkshops							
(2) Technical Standards and Commentaties for Port and Harbour Facilities in Japan. The Overseas Coastal Area	on Evaluatio	n of Liq	uefactio	n Resista	ance of Soils. J	ournal of Geo	otechnical and	Geoenviro	nmental Engi	neering/Octol	ber 2001						
Development Institute of Japan.	(2) Technical	Standa	rds and	Commer	taries for Port a	and Harbour I	acilities in Ja	pan. The O	verseas Coa	stal Area							
(3) CPT and SPT Based Liquefaction Triggering Procedures, by R.W. Boulanger and I.M. Idriss, Report № UCD/CGM-14/01 Image: Comparison of Cyclic Failure of Sits and Clays, by R.W. Boulanger and I.M. Idriss, Report № UCD/CGM-04/01 Image: Comparison of Cyclic Failure of Sits and Clays, by R.W. Boulanger and I.M. Idriss, Report № UCD/CGM-04/01 Image: Comparison of Cyclic Failure of Sits and Clays, by R.W. Boulanger and I.M. Idriss, Report № UCD/CGM-04/01 Image: Comparison of Cyclic Failure of Sits and Clays, by R.W. Boulanger and I.M. Idriss, Report № UCD/CGM-04/01 Image: Comparison of Cyclic Failure of Sits and Clays, by R.W. Boulanger and I.M. Idriss, Report № UCD/CGM-04/01 Image: Comparison of Cyclic Failure of Sits and Clays, by R.W. Boulanger and I.M. Idriss, Report № UCD/CGM-04/01 Image: Comparison of Cyclic Failure of Sits and Clays, by R.W. Boulanger and I.M. Idriss, Report № UCD/CGM-04/01 Image: Comparison of Cyclic Failure of Sits and Clays, by R.W. Boulanger and I.M. Idriss, Report № UCD/CGM-04/01 Image: Comparison of Cyclic Failure of Sits and Clays, by R.W. Boulanger and I.M. Idriss, Report № UCD/CGM-04/01 Image: Comparison of Cyclic Failure of Sits and Clays, by R.W. Boulanger and I.M. Idriss, Report № UCD/CGM-04/01 Image: Comparison of Cyclic Failure of Sits and Clays, by R.W. Boulanger and I.M. Idriss, Report № UCD/CGM-04/01 Image: Comparison of Cyclic Failure of Sits and Clays, by R.W. Boulanger and I.M. Idriss, Report № UCD/CGM-04/01 Image: Comparison of Cyclic Failure of Sits and Clays, by R.W. Boulanger and I.M. Idriss, Report № UCD/CGM-04/01 Image: Comparison of Cyclic Failure of Sits and Clays, by R.W. Boulanger and I.M. Idriss, Report № UCD/CGM-04/01 Image: Comparison of Cyclic Failure of Sits and Clays, by R.W. Boulang	Developme	ent Instit	ute of Ja	ipan.													
CRR M, sv? Razôn de resistencia cíclica CR Soldarger and LMLidras, Report N° COD/CGM-04/01 CR CRR M, sv? Razôn de resistencia cíclica barra de barra de barra de barra de concerción por confinamiento CR	(3) CPT and	SPT Ba	sed Liqu	efaction	Triggering Pro	cedures, by F	R.W. Boulange	er and I.M. I	driss, Report	N° UCD/CGI	M-14/01						
Induit a (1) Induit a (1) (MI)6005: MI a 60% energia corregido por % de finos Iongitud de la barra de sondaje (m) C CRR M, sv ² Razón de estés ciclica barra de sondaje (m) C CSR M, sv ² Razón de estés ciclica sondaje (m) FS: Factor de Seg FS = CRR M, sv ² / CSR M, sv ² 3 a 4 0.8 rd: Coeficiente de reducción de stress (0,4-crd<1)	(4) Evaluating	the Po	tential fo	r ∟iquefa	iction or Cyclic	railure of Silf	is and Clays, b	by R.W. Bo	uanger and I	.w. Idriss, Re	ροπ Ν° UCD/C	GM-04/01					
Interview Interview <t< td=""><td>(N1)60ce</td><td>N1 014</td><td>S0% and</td><td>raía corr</td><td>egido por % da</td><td>finos</td><td></td><td></td><td></td><td></td><td></td><td>I abla 2 (1)</td><td></td><td>1</td><td></td><td></td><td></td></t<>	(N1)60ce	N1 014	S0% and	raía corr	egido por % da	finos						I abla 2 (1)		1			
Ke: Correctión por confinamiento Sondaje (m) CSR M, sv: Razón de estrés cíclico <3	CRR M sv ²	Razón	de recie	stencia ci	iclica	0.005						barra de	C.				
CSR M, sv: Razón de estrés cíclico <3	kσ:	Correc	ción no	r confina	miento							sondaie (m)	UK				
FS: Factor de Segl FS = CRR M, sv' / CSR M, sv' 3 a 4 0.8 rd: Coeficiente de reducción de stress (0.4-rd<1)	CSR M, sv':	Razón	de estre	és cíclico)							<3	0.75	1			
rd: Coeficiente de reducción de stress (0,4 <rd<1) 0.85="" 0.95="" 1="" 10="" 2<="" 30="" 4="" 6="" a="" de="" página="" td=""><td>FS:</td><td>Factor</td><td>de Seg</td><td>FS = C</td><td>RR M, sv´ / CSI</td><td>R M, sví</td><td></td><td></td><td></td><td></td><td></td><td>3 a 4</td><td>0.8</td><td>1</td><td></td><td></td><td></td></rd<1)>	FS:	Factor	de Seg	FS = C	RR M, sv´ / CSI	R M, sví						3 a 4	0.8	1			
6 a 10 0.95 10 a 30 1	rd:	Coefic	iente de	reducció	ón de stress (0,	4 <rd<1)< td=""><td></td><td></td><td></td><td></td><td></td><td>4a6</td><td>0.85</td><td></td><td></td><td></td><td></td></rd<1)<>						4a6	0.85				
10 a 30 1 Página 1 de 2												6 a 10	0.95				
												10 a 30	1]		Página 1 de 2	

ANEXO B: CORRECCIÓN SPT Y MCA LICUACIÓN (SPT-4)

			COR	RECO	INFORME	de gae Ioria de	BINETE E CALCULO	LICUACIÓN											
Description	Dueste	Caraa			ANALISIS BOUL	ANGER-	IDRISS (2014	-)											
Proyecto:	Puerto	Corone					CDD	CDD	N.49		_	Donán do s		alian nomenida					
Sondaje N°	: SPT-4	Marítim	10				URR Misv	= UKK M=7.5:	5V'=1.IVI)	Razon de l	esitericia c	clica corregida					
Clasificació	on Sísm	ica del	Suelo				Factores de	corrección que	se aplica	an al CF	RR _{M=7.5:}	$_{w=1}$, calcul	ado:						
zona sismic	a 3						MSF:	Factor de escala	de la ma	ignitud re	eal	MSF:=	variable						
amax (ao)=	0.5	g					Ko:	Corrección por n	o linealid	ad entre	presione	Κσ:=	variable						
1 atm= M=	1.033	kg/cm ²																	
MSF=	variable	•					CSR M, sv	= 0,65 ·(σv/σ	.	a _{máx} /g	ı) ∙rd	Razón de	de estrés ci	clico					
	: Ingres	sar dato											1	-					
Nº do	Protui	ndidad n)	(4)		Comportamionto	(3)	(3) Condición	(3)	(3)	(2)	(2)	(2) k=	(2) k=	(3) CRR _{M,}				(3) CSR	(3) FS = CRR
intervalos	desde	haeta	Contenido de finos	(*)	Suelos Finos	(N1)60c	licuación (N1)60cs	CRR _{M=7,5;σv'=1}	MSF	MSF	Cσ=	(formula)=	(mínimo)=	σν΄	(3) α(z)	(3) β(z)	(3) rd	Μ, σν΄ (σ. σ. Ι)	σν' / CSR M. σν'
	uesue	nasta					(11)0000							(corregido)				(501)	
0	0.00	4.00	10	NP	Como Arenas	23.6	23.6	0.260	1.65	0.76	0.15	1 1 1	1 1 1	0.220	-0 227	0.026	1.00	1.47	0.15
2	5.00	5.45	4	NP	Como Arenas	54.4	no licuable	no licuable	2.20	0.56	ho aplica	no aplica	no aplica	no licuable	-0.299	0.020	1.00	1.31	no licuable
3	6.00	6.45	4	NP	Como Arenas	57.8	no licuable	no licuable	2.20	0.56	ho aplica	no aplica	no aplica	no licuable	-0.376	0.042	1.00	1.20	no licuable
4	7.00	7.45	19	NP	Como Arenas	76.1	no licuable	no licuable	2.20	0.56	ho aplica	no aplica	no aplica	no licuable	-0.457	0.051	1.00	1.12	no licuable
7	9.00	9.45	19	NP	Como Arenas	14.9	14.9	0.155	1.31	0.88	0.11	1.00	1.00	0.137	-0.632	0.071	0.99	1.00	0.14
8	10.00	10.38																	sup no licuable
9	10.50	10.78																	sup no licuable
11	11.00	11.15																	sup no licuable
12	12.00	12.08											1						sup no licuable
13	13.00	14.00																	sup no licuable
14	14.00	15.00		<u> </u>															sup no licuable
15	15.00	16.00																	sup no licuable
17	17.00	18.00																	sup no licuable
18	18.00	19.00		1		1		1			1		1						sup no licuable
19	19.00	20.00		ļ									ļ						sup no licuable
20	20.00	21.00																	sup no licuable
	21.00	22.00																	sup no ilcuable
														1					
	: Fango	, terren	o sin capac	idad o	de soporte, el siste	ma confo	rmado por pilo	te + martinete, at	raviesan	esta zon	a solo po	or efecto de	l peso prop	io					
	: Anaio	gia con con IP3	muello Lo I 7. tiene con	Rojas nporta	(pilotes con 16 y 1 amiento COMO AR	7 m de fic	na en suelo fin debe realizar	me). Se determina un análisis de dec	a que des tradación	cíclica '	0.0 m el s "Cvclic S	ueio es NU oftenina" pa	ara verificar	:. si existirán o no	problem	nas durar	te		
	un sísr	no. Para	esta zona	(IP>=	7) No es válido el	análisis de	licuación CON	O ARENAS.	,						P				
NOTA:	(a) Hay	planos	as built que	e indic	an que los pilotes	de Caleta	Lo Rojas tenía	n entre 1 6 y 17 m	n de ficha	, los que	e se mide	en pasado e	el fango						
	(b) En	el Muelle	e Sur del P	uerto	Coronel el suelo fi	rme apara	ce a los 4 m de	e profundidad, no	se tiene i	nformac	ión sobre	a longitud	de los pilot	es.					
Modelo cor	struido	con la	infomació	inas c	conilada en los si	auientes	documentos:	cuable a los 9 m c	e prorun	uluau									
(i) De la Maz	a, G. et	al (2015	5). Lateral s	pread	ling inducido por lic	uación en	Lo Rojas, Cor	onel, estudio de te	erreno y r	nodelo r	numérico	Obras y P	royectos 17	, 106-115					
(ii) C. Ledez	ma, J.C	Tiznad	o (paper N	2200) Liquefactions effe	ects on the	e northern Corc	nel pier during the	e 2010 Ma	aule Chi	le earthq	uake. 16th \	Vorld Confe	erence on Earth	quake Er	ngineerin	g, 16W0	CEE 2017,	Santiago Chile.
(1) Liquefac	IAS: tion Res	istance	of Soils: Si	ımma	ry Report from the	1996 NCI	-ER and 1998	NCEER/NSE Wo	rkshons										
on Evaluati	on of Lic	uefactio	on Resistar	nce of	Soils. Journal of G	Seotechnic	al and Geoenv	ironmental Engine	ering/Oc	tober 20	001								
(2) Technica	al Standa	rds and	Comment	aries f	or Port and Harbou	ur Facilities	s in Japan. The	Overseas Coasta	al Area										
(3) CPT and	SPT B	ute or J ised Lic	apan. uefaction 1	rigge	ring Procedures, b	v R.W. Bo	ulanger and LM	/ Idriss, Report N	I° UCD/C	GM-14/0	01								
(4) Evaluatin	g the Po	tential f	or Liquefac	tion o	r Cyclic Failure of	Silts and C	lays, by R.W. I	Boulanger and I.M	I. Idriss, F	Report N	° UCD/C	GM-04/01							
Nomenclate	ura (3):													Tabla 2 (1)					
(N1)60cs:	N1 al 6	0% de (energía cor	regido	o por % de finos									longitud de la	C-				
ko:	Correc	ción poi	confinami	ca ento										sondaje (m)	UR				
CSR M, sv':	Razón	de estre	és cíclico											<3	0.75				
FS:	Factor	de Seg	FS = CRF	R M, s	v´/CSR M, sv´									3 a 4	0.8				
rd:	Coefic	ente de	reducción	de str	ress (0,4 <rd<1)< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>4a6</td><td>0.85</td><td></td><td></td><td></td><td></td></rd<1)<>									4a6	0.85				
														6 a 10 10 a 30	0.95				Página 2 de 2
L	1					1	1	1		1			1	10 4 50	4				1 ug.110 2 uf 2

							F							1		
			COP													
			COR				S (2014)	DACION								
Provecto:	Puerto	Corone	1	ANALIO	IO DOULAI		0 (2014)									
Localidad:	Coron	el			N = N ₋ C	- C- C- C-					(NL) C.	N				
Sondaie N°	SPT-2	Marítim	0		Factores de	E.OB.OR.OS	del valor S	:PT medido (N)		(141)60 - ON	1460				
	011-2	Ivicarrenti			1 8010103 00	CONFECCIONES		i i medido (i								
N. Aqua:	0	m.N.R.	dato obt	enido del Inforr	N:	Índice de per	netración e:	stándar medi	do							
Cota boca:	-12.9	m.N.R.	S		C _N :	Corrección p	or confinan	niento efectiv	0		C _N =	variable (0,4<0	C _N <1,7)			
					C ·	Corrossión n		del mortinete			C	0.75				
					CE.	Conección p	or energia	uermannete			OE-	0.75				
					C _R :	Corrección p	or díametro	o del sondaje			C _B =	1				
					C _R :	Corrección p	or longitud	de las barras			C _R =	variable				
					C _S :	Corrección r	nuestreado	ores c/sin reve	estimiento		C _S =	1.2				
					m:	coef. inicial q	ue debe co	onverger para	determinar la	a corrección po	r confinamiente)				
	Profu	ndidad		Peso unitario	Presion	Duration	Análisis	Indice de	(3) Indice		(3) Factores	(2)	(7)	(3) Iteración	(2) Eastaras da	(3) Indice
Nº de	(m)	Clas.	saturado	vertical	Presion	de	penetracion	penetración	(3) m inicial	de corrección	(3)	(3) Determinentión	hasta	(3) Factores de	penetración
intervalos	deede	haeta	0.5.0.5	estimado γt	efectiva σ`v	rv (tonf/m ²)	licuación	estándar	N ₆₀	convergencia	C _{N, con m}	de A(N1)60	de (N1)60cs	convergencia	Correccion UR	(N ₁) ₆₀
	uesue	TidSta		(tonf/m ³)	(tonf/m ²)	00 (1011/11)	Nspt	medido N	(corregido)	convergencia	inicial	00 2(11)00	06 (11)0003	con m inicial	(Tabla 2 (1))	(corregido)
0	0.00	4.00	ML-MH	1.91	3.64	20.54	0	0								
1	4.00	4.45	SM	2.10	4.90	22.25	2	2	2	0.58	1.51	4.30	7.02	0.58	1.00	3
2	5.00	5.45	SP	2.10	6.00	24.35	31	31	28	0.34	1.19	0.00	33.20	0.34	1.00	33
3	6.00	6.45	SP	2.10	7.10	26.45	20	20	18	0.43	1.16	0.00	20.86	0.43	1.00	21
4	7.00	7.45	SC	2.10	8.20	28.55	3	3	3	0.58	1.12	4.30	7.33	0.58	1.00	3
6	9.00	9.45	SM	2.10	10.40	32.75	1/	1/	15	0.45	0.98	4.30	19.33	0.45	1.00	15
	11.00	11.45	510	2.10	12.60	34.00	21	10	14	0.40	0.94	4.30	17.60	0.40	1.00	14
9	12.00	12 45	SM	2.10	13.70	39.05	33	33	30	0.47	0.90	4 30	30.82	0.47	1.00	27
10	13.00	13.45	SP	2.10	14.80	41.15	37	37	33	0.30	0.87	0.00	28.81	0.30	1.00	29
11	14.00	14.45	SP	2.10	15.90	43.25	47	47	42	0.32	0.86	0.00	36.47	0.32	1.00	36
12	15.00	15.45	SP	2.10	17.00	45.35	45	45	41	0.34	0.84	0.00	33.82	0.34	1.00	34
13	16.00	16.45	SP	2.10	18.10	47.45	57	57	51	0.28	0.85	0.00	43.45	0.28	1.00	43
14	17.00	17.45	SP	2.10	19.20	49.55	72	72	65	0.21	0.87	0.00	56.51	0.21	1.00	57
15	18.00	18.45	SP	2.10	20.30	51.65	100	100	90	0.07	0.95	0.00	85.65	0.07	1.00	86
16	19.00	20.00	ļ													
17	20.00	21.00														
18	21.00	22.00														
19	22.00	23.00														
	20.00	21.00														
								1			1					
	: Fang	o, terren	o sin cap	acidad de sopo	orte, el sisten	na conformad	o por pilote	e + martinete	, atraviesan e	sta zona solo p	or efecto del p	eso propio				
	: Analo	gia con	muello L	o Rojas NOTA(a). Se deterr	nina que el su	elo del Mue	elle Norte Co	ronel desde la	os 12 m de pro	fundidad es fin	ne y NO LICUAE	BLE. Según doci	umento (ii) los j	pilotes tienen 20m	n in the second s
	: Zona	conIP≥	7, tiene o	comportamiento	COMO ARC	CILLA. Se deb	be realizar u	un análisis de	degradación	cíclica "Cyclic	Softening" para	a verificar si exist	irán o no probler	mas durante		
	un sísi	no. Para	a esta zor	na (IP>=7) No e	es válido el ar	nálisis de licua	ación COM	DARENAS.								
NOTA:	(a) Hay	/ planos	as built o	que indican que	los pilotes d	e Caleta Lo R	ojas tenian	entre 1 6 y 1	/ m de ficha,	los que se mic	len pasado el f	ango		and a la Marca a series	al (an an (Calca)	
	(D) En	el Muello	e None u	uppión on doto	rmino quo ol	unie aparace	NO LICUA	PLE oporooo	a loc 12 m d	e que los piloli	por lo tanto lor	nilotos dol Muol	e precisa si se c la Norto da Corr	contabiliza o no	m ombobidos on	cuelo firmo
Modelo cons	truido	con la i	nfomaci	ón reconilada	en los sigu	ientes docur	nentos:		105 12 111 0	e prorunuluau,	por lo tanto los	pilotes del Muel	le None de Con	Shertenunano	III embebluos en	Suelo filfile
(i) De la Maza	G. et a	I (2015)	Lateral s	spreading induc	ido por licua	ción en Lo Ro	ias. Corone	el. estudio de	terreno v mo	delo numérico.	Obras v Prove	ctos 17, 106-11	5			
(ii) C. Ledezm	a, J.C.	Tiznado	(paper N	l°2200) Liquefa	ctions effect	s on the north	ern Corone	l pier during t	he 2010 Maul	e Chile earthqu	ake. 16th Wor	d Conference or	Earthquake En	gineering, 16W	CEE 2017, Santia	ago Chile.
REFERENCIA	AS:															
(1) Liquefaction	on Resis	stance o	f Soils: S	ummary Repor	t from the 19	96 NCEER ar	nd 1998 NC	EER/NSF W	orkshops							
on Evaluation	n of Liqu	Jefaction	n Resista	ince of Soils. Jo	ournal of Geo	technical and	Geoenviror	nmental Engi	neering/Octob	per 2001						
(2) Technical	Standar	ds and (Commen	taries for Port a	nd Harbour F	acilities in Jap	ban. The Ov	verseas Coas	stal Area						-	
Developmen	nt Institu	ite of Ja	pan.	Triana de F		NV Davis		delan Dara - 1		1.1.1/04						
(3) CPT and S	H Bas	sed Liqu	eraction	I riggering Proc	edures, by R	.vv. Boulange	er and I.M. I	anss, Report	IN" UCD/CGN	/l-14/01	214.04/04					
Nomenclature	ule Pot	entiai fo	Liqueta	cuon or Cyclic F	anure or Silt	s and Clays, b	y K.W. BOU	Jianger and I.	w. iariss, Rep	JOIL Nº UCD/CI	JIVI-04/01					
(N1)60cs	a (3): N1 al f	0% ere	raía com	eaido nor % de	finos						longitud do lo		1			
CRR M sv	Razón	de recie	tencia cí	cg.ao por 78 de							barra de	C.				
kr:	Correc	ción po	r confinar	miento							sondaje (m)	UK	i			
CSR M, sv':	Razón	de estre	és cíclico)							<3	0.75	i			
FS:	Factor	de Seg	FS = CI	RR M, sv´ / CSF	R M, sví						3 a 4	0.8	1			
rd:	Coefic	iente de	reducció	ón de stress (0,	4 <rd<1)< td=""><td></td><td></td><td></td><td></td><td></td><td>4 a 6</td><td>0.85</td><td>]</td><td></td><td></td><td></td></rd<1)<>						4 a 6	0.85]			
											6 a 10	0.95				
											10 a 30	1	J		Página 1 de 2	

ANEXO C: CORRECCIÓN SPT Y MCA LICUACIÓN (SPT-2)

<u> </u>					INFORM		INICTO												
			000			DE GAB													
			COR	RECO	ION SPITYMEN		CALCULO	LICUACION											
_	_				ANALISIS BOUL	ANGER-I	DRISS (2014	•)											
Proyecto:	Puerto	Corone																	
Localidad:	Corone	el					CRR M,sv	= CRR _{M=7.5:0}	_{5v′=1} .M	SF∙Ko	7	Razón de	resitencia ci	clica corregida					
Sondaje N°:	SPT-2	Marítim	10																
							Factores de	corrección que :	se aplic	an al CF	RR M=7,5;	sv'=1, calcu	lado:						
Clasificació	n Sísmi	ca del S	uelo																
zona sismica	3						MSF:	Factor de escala	de la ma	agnitud re	eal	MSF:=	variable						
amay (ao)-	0.5						Ka	Corrección por p	o linealid	lad ontro	nregion	Ka-	variable						
amax (ao)=	0.0	9						Concoolin por h	omodino	aa onao	probibili		Vanabio						
1 atm=	1.033	kg/cm ²																	
M=	8.8																		
MSF=	variable	е					CSR M, SV	= 0,65 ·(σv/σ	5V´) · (a _{máx} /g) ∙rd	Razón de	de estrés cí	clico					
	: Ingre:	sar dato									ĺ								
	Profu	ndidad		1								1	1						
№ de	(1	m)	(4)		Comportamiento	(3)	(3) Condición	(3)	(3)	(3)	(3)	(3) kg	(3) kg	(3) CRR M,				(3) CSR	(3) FS = CRR M
intervalos			Contenido	IP (*)	Suelos Finos	(N1)60c	licuación	CRR	MSF	MSF	Cσ=	(formula)=	(mínimo)=	σv΄	(3) α(z)	(3) β(z)	(3) rd	M, σν΄	/CSR
	desde	hasta	de finos			S	(N1)60cs	M=7,5;σV =1	max				Ľ	(corregido)				(sol)	σV. / ΟΟΙΧ Μ, σV.
(0.00	4.00																	
1	4.00	4.45	19	NP	Como Arenas	7.0	7.0	0.098	1.14	0.95	80.0	1.06	1.06	0.099	-0.227	0.026	1.00	1.48	0.07
2	5.00	5.45	4	NP	Como Arenas	33.2	no licuable	no licuable	2.20	0.56	0.24	1.12	1.12	no licuable	-0.299	0.034	1.00	1.32	no licuable
3	6.00	6.45	4	NP	Como Arenas	20.9	20.9	0.217	1.53	0.81	0.14	1.05	1.05	0.183	-0.376	0.042	1.00	1.21	0.15
4	7.00	7.45	19	NP	Como Arenas	7.3	7.3	0.100	1.14	0.95	0.08	1.02	1.02	0.097	-0.457	0.051	1.00	1.13	0.09
e	9.00	9.45	19	NP	Como Arenas	19.3	19.3	0.198	1.47	0.83	0.13	0.99	0.99	0.163	-0.632	0.071	0.99	1.01	0.16
7	10.00	10.45	19	NP	Como Arenas	17.8	17.8	0.182	1.41	0.85	0.12	0.98	0.98	0.152	-0.723	0.081	0.99	0.97	0.16
8	11.00	11.45	4	NP	Como Arenas	17.0	17.0	0.174	1.38	0.86	0.12	0.97	0.97	0.145	-0.817	0.091	0.99	0.94	0.15
9	12.00	12.45	19	NP	Como Arenas	30.8	no licuable	no licuable	2.05	0.61	0.21	0.93	0.93	no licuable	-0.912	0.102	0.98	0.91	no licuable
10	13.00	13.45	4	NP	Como Arenas	28.8	28.8	0.419	1.93	0.66	0.19	0.92	2 0.92	0.256	-1.008	0.112	0.98	0.88	0.29
11	14.00	14.45	4	NP	Como Arenas	36.5	no licuable	no licuable	2.20	0.56	0.29	0.87	0.87	no licuable	-1.104	0.122	0.97	0.86	no licuable
12	15.00	15.45	4	NP	Como Arenas	33.8	no licuable	no licuable	2.20	0.56	0.25	0.87	0.87	no licuable	-1.199	0.133	0.97	0.84	no licuable
13	16.00	16.45	4	NP	Como Arenas	43.5	no licuable	no licuable	2.20	0.56	ho aplica	no aplica	no aplica	no licuable	-1.293	0.143	0.96	0.82	no licuable
14	17.00	17.45	4	NP	Como Arenas	56.5	no licuable	no licuable	2.20	0.56	no aplica	no aplica	no aplica	no licuable	-1.385	0.153	0.96	0.80	no licuable
15	18.00	18.45	4	NP	Como Arenas	85.6	no licuable	no licuable	2.20	0.56	no aplica	no aplica	no aplica	no licuable	-1.474	0.162	0.95	0.79	no licuable
16	19.00	20.00																	sup no licuable
1/	20.00	21.00																	sup no licuable
10	21.00	22.00																	sup no licuable
20	22.00	23.00																	sup no licuable
20	20.00	24.00																	Sup no licuable
	-																		
	: Fang	. terren	o sin capad	cidad c	le soporte, el siste	ma confor	mado por pilo	te + martinete, atr	aviesan	esta zon	a solo po	or efecto de	el peso prop	io					
	: Analo	gia con	muello Lo	Rojas	NOTA(a). Se dete	rmina que	el suelo del Mu	elle Norte Corone	desde	los 12 m	de prof	undidad es	firme y NO I	LICUABLE. Se	gún docu	imento (ii) los pilo	tes tienen	20m
	: Zona	con IP ³	7, tiene con	, nporta	miento COMO AR	CILLA. Se	debe realizar	un análisis de deg	radaciór	cíclica "	Cyclic S	oftening" pa	ara verificar	si existirán o no	problem	ias duran	te		
	un sísr	no. Para	a esta zona	(IP>=	7) No es válido el a	análisis de	licuación CON	IO ARENAS.											
NOTA:	(a) Hay	planos	as built que	e indic	an que los pilotes	de Caleta I	Lo Rojas tenía	n entre 1 6 y 17 m	de ficha	, los que	se mide	en pasado e	el fango						
	(b) En	el Muell	e Norte del	Puerte	o Coronel el suelo	firme apar	ace a los 4 m o	de profundidad, so	olo se sa	be que l	os pilote	s tienen 20	m de longitu	ud, no se precis	sa si se c	ontabiliza	o no el	fango (fich	na).
	Con es	ste análi	sis de licua	ción, s	e determina que e	l suelo firm	ne y NO LICU	ABLE aparece a lo	os 12 m	de profu	ndidad, p	oor lo tanto	los pilotes d	el Muelle Norte	de Coro	nel tendr	ían 8 m	embebido	s en suelo firme
Modelo con	struido	con la	infomació	n reco	pilada en los sig	uientes d	ocumentos:												
(i) De la Maza	a, G. et a	al (2015)	. Lateral sp	oreadir	ng inducido por licu	iación en L	o Rojas, Coro	nel, estudio de ter	reno y m	iodelo nu	imérico.	Obras y Pro	oyectos 17,	106-115					
(ii) C. Ledezr	na, J.C.	Tiznado	(paper N°2	2200)	Liquefactions effe	cts on the r	northern Coron	el pier during the	2010 Ma	ule Chile	earthqu	ake. 16th W	/orld Confer	ence on Eartho	luake Eng	gineering	, 16WC	EE 2017, S	Santiago Chile.
REFERENCI	AS:																		
(1) Liquetact	on Resi	stance o	t Soils: Su	mmary	Report from the 1	996 NCEL	ER and 1998 N	ICEER/NSF Work	shops										
on Evaluation	n of Liq	ueractio	n Resistant	ce of S	Solis. Journal of Ge	eotecnnica Essilitios	and Geoenvir	onmental Enginee	ring/Oct	bber 200	1								
(2) Technical	Stanual et lectit	us anu	Commenta	nes io	Port and Harbour	Facilities	in Japan. The C	Jverseas Coastai	Area										
(3) CPT and	SPT Ba		ipari. Infaction Tr	riggeri	ng Procedures by	R W Bou	langer and I M	Idriss Report Nº		M-14/01									
(A) Evaluation	the Pot	ential fo	r Liquefact	ion or	Cyclic Eailure of S	ite and Cla	we by RW B	nulanger and I M	Idrice R	enort Nº		M-04/01							
Nomenclatu	ra (3).	Gridaric	LIQUEIDEL	Jon or	Cyclic Fallare of C		iy3, by R. W. b	bulanger and t.w.	iun33, it	oponin	000/00	JWI-0-4/01		Tabla 2 (1)					
(N1)60cs	N1 al 6	0% de i	eneraía cor	rregido	nor % de finos									longitud de la		1			
CRR M. sv'	Razón	de resi	tencia cícli	ica										barra de	CP	l			
kσ:	Correc	ción po	confinami	ento										sondaje (m)	- 'n	i			
CSR M, sv':	Razón	de estre	es cíclico	-										<3	0.75	i			
FS:	Factor	de Seq	FS = CRF	R M, sv	/ CSR M, sv									3a4	0.8	1			
rd:	Coefic	iente de	reducción	de str	ess (0,4 <rd<1)< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>4 a 6</td><td>0.85</td><td></td><td></td><td></td><td></td></rd<1)<>									4 a 6	0.85				
														6 a 10	0.95				
														10 a 30	1				Página 2 de 2

			CORRECC	INFORI	ME DE GAB MORIA DE	INETE CALCULO	LICUACIÓN									
			A	NÁLISIS BO	JLANGER-I	DRISS (2014	4)									
B	0-1-1-	L . Delas														
Proyecto:	Caleta	Lo Rojas				0 0 0					NI					
Sondaio M	COIDILE ST 1	Torroctr			N ₆₀ = N·C	E.CB.CR.CS	dol volor SP	E modido (NI)		$(N_1)_{60} = C_N$	• IN ₆₀					
Solidaje N	31-1	Tenesue	5		r actores de	conecciones	uel valut SF									
N. Agua:	0	m.N.R.S	dato obtenido	del Infome	N:	Índice de pe	netración esta	ándar medido								
Cota boca:	0	m.N.R.S			C _N :	Corrección p	or confinamie	ento efectivo		C _N =	variable	(0,4 <c<sub>N<1,7</c<sub>	7)			
Por ser un s	ondaje	terrestre r	no hay columr	na de agua	C₌:	Corrección p	or energía de	el martinete		C _E =	1	60% Ene	eraía			
olomiondo e		and blakes		tente ne co	C .	Composión n	ar díamatra a	la la andala		-E	4					
suma a la co	sobie ca sluma de	e Presión	vertical total	tanto no se	C _B .	Corrección p	or longitud de	e las barras		C _B =	variable					
					Co:	Corrección r	muestreadore	s c/sin revest	miento	Co=	12					
					03. m:	coof inicial a			torminar la cor	rocción por cor	finamiante					
	Profu	Indidad		Dece unitorio	Dreaion	CUEL ILICIAI C		(3) Indice		(3) Factores			(0) 11	(3) Eactores	(3) Indice	(5)
№ de	(m)	Clasificación	saturado	vertical	Presion	nenetración	penetración	(3) m inicial	de corrección	(3)	(3)	(3) Iteracion	de corrección	penetración	(5) Densida
intervalos		1.	U.S.C.S.	estimado yt	efectiva σ`v	vertical total	estándar	Neo	hasta la	C _{N. con m}	Δ(N1)60	(N1)60cs	convergencia	C _P (Tabla 2	(N1)60	relativa
	desde	hasta		(tonf/m ³)	(tonf/m ²)	σv (tonf/m²)	medido N	(corregido)	convergencia	inicial			con m inicial	(1))	(corregido)	(DR)
1	1.00	1.45	SP	1.85	1.23	2.68	11	10	0.50	1.70	0.00	16.83	0.47	0.75	17	60.
2	2.00	2.45	SP	1.85	2.08	4.53	14	13	0.48	1.70	0.00	21.42	0.43	0.75	21	6
3	3.00	3.45	SP	1.86	2.95	6.40	10	9	0.65	5 1.70	0.00	15.30	0.48	0.75	15	57.
4	4.00	4.45	SP	1.85	3.78	8.23	4	4	0.62	1.70	1.15	1.68	0.57	0.80	7 c	37.
6	6.00	6.45	SP	1.85	5.48	11.00	F	7	0.52	1.01	0.00	9.75	0.53	0.05	10	46
7	7.00	7.45	SP	1.85	6.33	13.78	5	6	0.65	1.35	0.00	7.67	0.57	0.95	8	40.
8	8.00	8.45	SC	1.85	7.18	15.63	6	6 7	0.53	1.19	5.36	13.51	0.50	0.95	8	42.
9	9.00	9.45	SC	1.85	8.03	17.48	10	12	0.45	5 1.10	5.36	18.61	0.45	1.00	13	53.
10	10.00	10.45	SC	1.85	8.88	19.33	3	4	0.51	1.06	5.36	9.19	0.55	1.00	4	28.
11	12.00	11.45	50	1.85	9.73	21.18	3	4	0.51	1.01	5.30	9.01	0.55	1.00	4	28.
12	13.00	13.45	CH	1.55	7.40	20.85	2	2	0.50	1.16	5.60	8.39	0.56	1.00	3	24.
14	14.00	14.45	CH	1.55	7.95	22.40	1	1	0.50	1.12	5.60	6.95	0.58	1.00	1	17.
15	15.00	15.45	CH	1.55	8.50	23.95	2	2	0.50	1.08	5.60	8.21	0.56	1.00	3	23.
16	16.00	16.45	CH	1.55	9.05	25.50	1	1	0.50	1.05	5.60	6.86	0.58	1.00	1	16.
17	17.00	17.45	CL	1.58	10.12	27.57	2	2	0.44	0.99	5.60	7.99	0.57	1.00	2	22.
10	19.00	19.45	CL	1.50	11.70	30.73	13	16	0.38	0.97	5.60	20.50	0.40	1.00	12	5
20	20.00	20.45	CL	1.58	11.86	32.31	15	18	0.38	0.90	5.60	22.47	0.44	1.00	17	60.
	: Fango	, terreno	sin capacidad	de soporte, el	sistema confe	ormado por p	ilote + martir	nete, atraviesa	n esta zona sol	o por efecto de	l peso pro	pio				
	: Cota f	icha pilote	es verticales e	e inclinados de	proyecto.											
	: Zona	con IP≥7,	tiene compoi	rtamiento COM	O ARCILLA. S	Se debe realiz	ar un análisis	de degradaci	ón cíclica "Cyc	lic Softening" p	ara verifica	r si existirán	o no problema	as durante		
ΝΟΤΑ·	(a) Hav	nlance as	sta zona (iP>	ican que los nil	o el analisis u stes de Calet:	a Lo Roise ter	JIVIO AREINA	o. v 17 m de ficl	ha los que se r	niden nasado e	Eango					
NOTA.	(b) FLs	uelo firme	aparace a lo	s 10 m de profi	Indidad v con	no la ficha ha i	de considerai	se a partir de	esa profundida	d. los pilotes d	ebieron alc	anzar los 26	v 27 m de pro	fundidad total.		-
	Con es	te análisis	de licuación,	, se determina d	que el suelo fi	rme y NO LIC	UABLE apar	ece a los 16 r	n de profundida	ad, por lo tanto	los pilotes	de Caleta L	o Rojas tendría	an 10 a 11 m en	nbebidos en	suelo firm
Modelo co	nstruid	o con la i	nfomación r	ecopilada en l	os siguiente	s documento	os:									
- 10010-01	-ITE-00	2-VB (Ag	osto 2010)													
- Informe: 8	145.	(Dictuc U	J) IG-2010-0.	364												
(1) Liquefac	tion Res	sistance c	f Soils: Sumn	narv Report from	m the 1996 N	CEER and 19	98 NCEER/N	SF Workshop	s							-
on Evaluati	ion of Li	quefactio	n Resistance	of Soils. Journa	al of Geotechr	nical and Geoe	environmenta	Engineering/	October 2001							
(2) Technica	al Standa	ards and	Commentarie	s for Port and H	larbour Faciliti	es in Japan. 1	The Overseas	Coastal Area								
Developm	ent Inst	itute of Ja	pan.													
(3) CPT and	I SPT B	ased Liqu	efaction Trigo	gering Procedu	res, by R.W. E	Boulanger and	II.M. Idriss, R	eport N° UCD	/CGM-14/01	Dio Oldo dio d						
 (4) Evaluating (5) Soil Liquid 	ng the Pr	otential to	r Liqueraction	or Cyclic Fallul	e of Slits and	Clays, by R.V	M Idrise	and LIM. Idriss	s, Report N° UC	D/CGIVI-04/01						
Nomenclat	ura (3):	r duning ca	artiquakes. O	anana, 071.200	0, 09 11.11. 01	Julanger and i				Tabla 2 (1)						
(N1)60cs:	N1 al 6	0% energ	ía corregido p	oor % de finos						longitud de la						
CRR M, sv	Razón	de resiste	encia cíclica							barra de	CR					
kσ:	Correc	ción por c	onfinamiento							sondaje (m)						
CSR M, sv':	Razón	de estrés	cíclico							<3	0.75					
FS: rd:	Factor	de Segur	FS = CRR N	1, sv / CSR M, s	SV ¹					3a4	0.8	{				
iu.	CUEIICI		suuccion de s	uess (0,4 <fd<1< td=""><td></td><td></td><td></td><td></td><td></td><td>6 a 10</td><td>0.05</td><td>1</td><td></td><td></td><td></td><td>-</td></fd<1<>						6 a 10	0.05	1				-
										10 a 30	1	1		Página 1 de ?		
	1				1		1		1	1.0000		,				

ANEXO D: CORRECCIÓN SPT Y MCA LICUACIÓN (ST-1)

			CO	RRE	INFORM CCIÓN SPT Y ME ANÁLISIS BOU	IE DE GABI MORIA DE JLANGER-I	NETE CALCULO L DRISS (2014)	ICUACIÓN											
Proyecto:	Caleta L	o Rojas	1	-															
Localidad:	Coronel						CRR Mist	= CRR M-7	5.ev'=1.MS	SF·Kσ		Razón de	e resitencia	cíclica corregid	la				
Sondaje N°:	ST-1	Terrest	tre				WE SV		1.04 =1.										
Clas, Sísmir	ra del Su	uelo	<u> </u>	-			Factores de	corrección que	se aplicai	n al CKI	R _{M=7.9}	_{3: sv'=1} , caio	;ulado:						
zona sismica	a 3	510					MSF:	Factor de esca	ila de la maç	gnitud rea	al	MSF:=	variable						
amax (ao)=	0.5	g					Ko:	Corrección por	no linealida	ud entre p	oresion	nKσ:=	variable						
1 atm=	1.033	kg/cm ²																	
M= MSF=	8.8 variable		'	-			CSR	- 0.65 .(av	/~Y) . (2	- /n)	rd	Razón de	e de estrés	cíclico					
10101 -	Ingres	ar dato					CON M, SV	- 0,00 -(00	104) - (5	*max' 97	-10	True on a s							
	Profur	ndidad		1	1			1		<u> </u>			1	(2)				(2)	(2)
Nº de intervalos	(n desde	n) hasta	(4) % finos	IP	Comportamiento Suelos Finos	(3) (N1)60cs	(3) Condición licuación (N1)60cs	(3) CRR _{M=7,5;σv'=1}	(3) MSF max	(3) MSF	(3) Cσ	(3) kσ (formula)	(3) ko (mínimo)	(3) CRR _{Μ, σν} ΄ (corregido)	(3) α(z)	(3) β(z)	(3) rd	(3) CSR _{M, ov} (solicitante)	(3) FS = CRR _{Μ, σν} . / CSR _{Μ, σν} .
1	1.00	1.45			Como Arenas	16.5	16.8	0.175	1 38	0.86	0.12	1 25	1.25	0.185	-0.049	0.006	1.00	0.71	0.26
2	2.00	2.45	5	NP	Como Arenas	21.4	21.4	0.225	i 1.55	0.80	0.12	1.23	1.22	0.218	-0.102	0.000	1.00	0.71	0.20
3	3.00	3.45	5	NP	Como Arenas	15.3	15.3	0.159	1.33	0.88	0.11	1.14	1.14	0.159	-0.162	0.019	1.00	0.71	0.22
4	4.00	4.45	10	NP	Como Arenas	7.7	7.7	0.103	1.15	0.95	0.08	1.08	1.08	0.105	-0.227	0.026	1.00	0.71	0.15
6	6.00	6.45	5	NP	Como Arenas	9.8	9.8	0.11€	3 1.19	0.93	0.03	1.05	1.05	0.114	-0.255	0.034	1.00	0.71	0.16
7	7.00	7.45	5	NP	Como Arenas	7.7	7.7	0.102	1.15	i 0.95	0.08	1.04	1.04	0.101	-0.457	0.051	1.00	0.70	0.14
8	8.00	8.45	30	11	Como Arcillas	13.5	13.5	0.144	1.27	0.90	0.10	1.03	1.03	0.134	-0.543	0.061	0.99	0.70	0.19
10	10.00	10.45	30	11	Como Arcillas	9.2	9.2	0.150	1.18	0.04	0.09	1.03	1.03	0.104	-0.723	0.071	0.99	0.70	0.23
11	11.00	11.45	30	11	Como Arcillas	9.0	9.0	0.111	. 1.17	0.94	0.09	1.00	1.00	0.105	-0.817	0.091	0.99	0.70	0.15
12	12.00	12.45	30	11	Como Arcillas	8.9	8.9	0.110	1.17	0.94	0.09	0.99	0.99	0.103	-0.912	0.102	0.98	0.69	0.15
13	14.00	13.45	60	20	Como Arcillas	6.9	6.9	0.107	1.10	0.94	0.09	1.03	1.03	0.103	-1.104	0.112	0.96	0.90	0.12
15	15.00	15.45	60	20	Como Arcillas	8.2	8.2	0.106	1.16	0.94	0.09	1.01	1.01	0.101	-1.199	0.133	0.97	0.89	0.11
16	16.00	16.45	60	20	Como Arcillas	6.9	6.9	0.097	1.14	0.95	0.08	1.01	1.01	0.093	-1.293	0.143	0.96	0.88	0.11
19	18.00	18.45	60	20	Como Arcillas	17.3	17.3	0.103	1.13	0.86	0.03	0.99	0.99	0.050	-1.305	0.153	0.90	0.83	0.12
20	19.00	19.45	60	20	Como Arcillas	20.5	20.5	0.212	1.51	0.81	0.14	0.98	0.98	0.169	-1.560	0.171	0.95	0.84	0.20
21	20.00	20.45	60	20	Como Arcillas	22.5	22.5	0.240	1.60	0.78	0.15	0.97	0.97	0.183	-1.641	0.179	0.94	0.83	0.22
NOTA:	: Cota fii : Zona c un sísm (a) Hay Con est	cha pilot on IP≥7 o. Para e planos a te análisi	es vertica , tiene co esta zona as built qu is de licu	ales e impor a (IP> ue indi ación,	inclinados de proy tamiento COMO AF =7) No es válido el ican que los pilotes , se determina que	ecto. CILLA . Se c análisis de lic de Caleta Lc el suelo firme	tebe realizar un cuación COMO Rojas tenían e a y NO LICUAE	análisis de deg ARENAS. entre 1 6 y 17 m BLE aparece a k	radación cío de ficha, los os 16 m de r	clica "Cy s que se profundic	clic So miden dad, po	oftening" pasado e por lo tanto l	ara verificar Il Fango los pilotes c	si existirán o n de Caleta Lo Ro	o problem ojas tendr	nas durai ían 10 a	nte 11 m e	embebidos en s	uelo firme
Modelo con: - 10010-01	struido co ITE-002	on la info -VB (Ag	mación r osto 201	recopi 0)	lada en los siguien	tes documen	tos:												
- Informe: 8	96947 (E	Dictuc UC	3) IG-201	10-030	64														
(1) Liquefac on Evaluati (2) Technica	tion Resist on of Liqual Standar	stance o uefaction rds and (f Soils: S n Resista Commer	Summance contaries	ary Report from the of Soils. Journal of (for Port and Harbo	3996 NCEE Geotechnical our Facilities in	R and 1998 NC and Geoenviro n Japan. The O	CEER/NSF Work nmental Enginer verseas Coasta	kshops ering/Octobe I Area	er 2001									
(3) CPT and (4) Evaluatin (5) Soil Liqu	SPT Bas g the Pot efaction	sed Liqu tential fo during ea	pan. iefaction ir Liquefa arthquakr	Trigge action es. Or	ering Procedures, b or Cyclic Failure of akland, CA:2008, b	by R.W. Boula Silts and Clar v R.W. Boula	anger and I.M. I ys, by R.W. Bo noer and I.M. Ic	driss, Report N° ulanger and I.M. driss.	UCD/CGM Idriss, Rep	I-14/01 ort N° U0	CD/CG	\$M-04/01							
Nomenclatu	ra (3):													Tabla 2 (1)					
(N1)60cs: CRR M. sv':	N1 al 60 Razón c	1% de er de resisti	nergía co encia cíc	rregid:	lo por % de finos									longitud de la barra de	C.				
kσ:	Correcc	ión por o	confinam	iento										sondaje (m)					
CSR M, sv':	Razón d	le estrés	3 cíclico									<u> </u>		<3	0.75				
FS: rd:	Factor d	ie Segur	FS = Ut	RK M, n de s	, sv [°] /CSR M, sv tross (0.4 <rd<1)< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3a4 4a6</td><td>0.8</td><td></td><td></td><td></td><td></td></rd<1)<>									3a4 4a6	0.8				
														6 a 10	0.95				
														10 9 30	1 1			Página 2 de 2	

ANEXO E: CORRECCIÓN SPT Y MCA LICUACIÓN (ST-2)

				INFOR	ME DE GABI	NETE										
			CORREC	CIÓN SPT Y N	EMORIA DE	CALCULO LI	CUACIÓN									
				ANÁLISIS BO	ULANGER-ID	ORISS (2014)										
Proyecto:	Muelle	Norte_P	erto Coronel													
Localidad:	Corone	el			$N_{co} = N \cdot C_{r}$	Co Co Co				$(N_4)_{co} = C_{hr}N$	60					
Sondaie N°	ST-2	Terrestr	0		Factores de c	orrecciones de	I valor SPT m	edido (N)		(···//60 = N ·	-60					
oonaaje it :	012	1011000			1 4010100 40 0			caldo (III)								
N. Aqua:	0	m N R S	dato obtenido	del Inforne	N:	Índice de pen	etración están	dar medido								
Cota boca:	0	m.N.R.S			Cu:	Corrección po	r confinamien	to efectivo		C _N =	variable (0.4	<c<sub>N<1.7)</c<sub>				
_					0					0			~			
Por ser un sor	ndaje ter	restre no	hay columna c	te agua	C _E :	Corrección po	r energia del i	martinete		C _E =	1	60% ENER	GIA			
ejerciendo sol	bre carg	a hidrosta	itica, por lo tan	to no se	C _B :	Corrección po	r díametro de	l sondaje		C _B =	1					
suma a la colu	ıma de F	Presión ve	ertical total ov ('tonf/m ²)	C _R :	Corrección po	r longitud de l	as barras		C _R =	variable					
ф.	0.56	m	diámetro pilot	te.	Ce	Corrección m	uestreadores	c/sin revestim	niento	Cc=	1.2					
Ŧ ·					0 3.	onof inicial au		raor para dat	orminor lo corr	og-	mianto					
	Profi	hebiba		-		coer, inicial qu	e debe conve	iger para dett						(0) = .	(0) 1 1	
		m)		Peso unitario	Presion	Presion	Indice de	(3) Indice	(3) m inicial	(3) Factores de			(3) Iteración	(3) Factores	(3) Indice	(5)
Nº de		1	Clasificación	saturado	verucal	vertical total	estándar	NI	hasta la	corrección C _{N,}	(3) Δ(N1)60	(3) (N1)60cs	nasta	C C C	(NL)	Densidad
intervalos	desde	hasta	0.5.0.5.	(tonf/m ³)	(toof/m ²)	σv (tonf/m ²)	modido N	IN ₆₀	convergencia	con minicipal			convergencia	C _R (Tabla 2	(IN1)60	relativa (DR)
				(1011/111)	(1011/111)		medido N	(corregiao)		commicial			CONTINUICIDE	(1))	(corregido)	
1	1.00	1.45	SP-SM	1.85	1.23	2.68	2	2	0.65	1.70	0.00	3.06	0.65	0.75	3	25.8
2	2.00	2.45	SP-SM	1.85	2.08	4.53	10	9	0.48	1.70	0.00	15.30	0.48	0.75	15	58
3	3.00	3.45	SP-SM	1.86	2.95	6.40	17	15	0.40	1.63	0.00	24.92	0.40	0.75	25	73.6
	4.00	4.45	SP-SM	1.85	3.78	8.23	45	43	0.22	1.24	1.15	54.65	0.22	0.80	54	107.8
	5.00	5.45	5P-SM	1.85	4.63	10.08	38	39	0.25	1.21	1.15	46.13	0.25	0.85	47	101.1
-	6.00	6.45	SP-SM	1.85	5.48	11.93	20	23	0.37	1.25	0.00	28.48	0.37	0.95	28	/8.7
7	7.00	1.45	SP-SM	1.85	6.33	13.78	18	21	0.40	1.20	0.00	24.64	0.40	0.95	25	/3.2
	8.00	0.45	SP-SM	1.00	7.10	15.03	10	1/	0.44	1.10	0.00	19.70	0.44	0.95	20	0.00
10	9.00	9.45	5P-5M	1.00	8.03	17.40	25	30	0.35	1.00	0.00	32.39	0.35	1.00	32	63.9
11	11.00	11.45	SP	1.00	0.00	21.18	10	14	0.51	1.00	0.00	14.59	0.01	1.00	15	56.3
12	12.00	12.45	SP	1.05	10.58	23.03	10	12	0.43	0.97	0.00	11.55	0.43	1.00	12	50.3
13	12.00	13.45	SP	1.85	11.43	24.88	18	22	0.02	0.94	0.00	20.36	0.02	1.00	20	66.5
14	14.00	14 45	M	1.58	8 38	22.83	22	26	0.34	1.06	5.61	33.64	0.34	1.00	28	78.1
15	15.00	15.45	MI	1.58	8.96	24.41	16	19	0.40	1.04	5.61	25.67	0.39	1.00	20	66.0
16	6 16.00	16.45	ML	1.58	9.54	25.99	18	22	0.38	1.02	5.54	27.53	0.38	1.00	22	69.1
17	17.00	17.45	SC	1.58	10.12	27.57	2	2	0.57	0.99	5.54	7.92	0.57	1.00	2	22.8
18	3 20.00	20.45	SM	1.85	17.38	37.83	75	90	0.12	0.94	4.77	88.99	0.06	1.00	84	135.3
19	21.00	21.45	SM	1.85	18.23	39.68	75	90	0.14	0.92	4.77	87.51	0.07	1.00	83	134
20	22.00	22.45	SM	1.85	19.08	41.53	38	46	0.33	0.81	4.77	41.61	0.29	1.00	37	89.5
21	23.00	23.45	SM	1.85	19.93	43.38	40	48	0.32	0.80	4.77	43.26	0.28	1.00	38	91.5
22	2 24.00	24.45	SM	1.85	20.78	45.23	50	60	0.26	0.83	5.36	54.97	0.21	1.00	50	103.8
23	3 25.00	25.45	SM	1.85	21.63	47.08	8	10	0.56	0.65	5.51	11.74	0.52	1.00	6	36.8
24	26.00	26.45	SM	1.85	22.48	48.93	2	2	0.58	0.63	5.51	7.01	0.58	1.00	2	18.1
25	28.00	28.45	CL	1.58	16.50	44.95	8	10	0.52	0.77	5.61	13.01	0.51	1.00	7	40.1
26	30.00	30.45	ML	1.58	3 17.66	48.11	100	120	0.01	0.99	5.61	124.93	-0.07	1.00	119	161.1
	: Cota i	icha pilot con IP≥7	es verticales e , tiene compor	tamiento COMO	royecto. ARCILLA. Se	debe realizar u	n análisis de d	legradación ci	íclica "Cyclic S	oftening" para ve	rificar si existir	án o no problem	nas durante			
NOTA	un sisn	no. Para	esta zona (IP>	=7) No es valido	el analisis de l	CUACION COMU	ARENAS.									
NOTA:	(a) may	pianos a	s built que indi	can que los pilos n 10 m do profu	ies de Caleta L	o Rojas teritari Io fiobo bo do o	entre 16 y 17	n de licha, id	os que se mide	n pasado el Fanç	ju n oloonzor loo '	26 y 27 m do n	of undided total			
	(D) El S	te onólici	e aparace a los	s to in de piordi	iuiuau y como		Disiderarse a	parui ue esa	profundidad, id	or lo tonto los pil	naicarizarios.	20 y 27 m de pi	ion 10 o 11 m c	·	ualo firmo	
Modelo cons	truido	on la int	s de licuación,	se uetermina qu	e el suelo nimi	e y NO LICOA		allos to titue	prorunuluau, p	or io tanto ios pil	Jies de Galeta	LU KUjas teriur		mbebidos en s	delo filme	
- 10010-01-17	FE-002-1	/B (Agos	to 2010)		siguiernes uoc	umentos.										
- Informe: 89	6947 (Di	ctuc UC)	IG-2010/													
REFERENCIA	15·		10-2010-0304													
(1) Liquefaction	on Resis	tance of t	Soils: Summar	v Report from th	e 1996 NCEEF	and 1998 NCF	ER/NSE Wor	rkshops								
on Evaluation	n of Liau	efaction f	Resistance of S	Soils. Journal of	Geotechnical a	nd Geoenviron	mental Engine	ering/Octobe	r 2001							
(2) Technical	Standard	is and Co	mmentaries fo	or Port and Harbo	our Facilities in	Japan. The Ove	erseas Coasta	al Area								
Developmer	nt Institut	e of Japa	in.													
(3) CPT and S	PT Bas	ed Liquet	action Triggeri	ing Procedures,	by R.W. Boular	nger and I.M. Id	riss, Report N	UCD/CGM-	14/01							
(4) Evaluating	the Pote	ential for L	iquefaction or	Cyclic Failure of	Silts and Clays	s, by R.W. Boul	anger and I.M	. Idriss, Repo	rt Nº UCD/CGM	<i>I</i> -04/01						
(5) Soil Liquef	action d	uring eart	hquakes. Oakl	and, CA:2008, b	y R.W. Bouland	ger and I.M. Idri	SS.									
Nomenclatur	a (3):									Tabla 2 (1)		_				
(N1)60cs:	N1 al 6	0% energ	gía corregido p	oor % de finos						longitud de la						
CRR M, sv':	Razón	de resist	encia cíclica							barra de	CR					
kσ:	Correc	ción por	confinamiento							sondaje (m)		1				
CSR M, sv':	Razón	de estrés	cíclico							<3	0.75	-				
FS:	Factor	de Segu	FS = CRR M	, sv' / CSR M, sv	V'				-	3a4	0.8	4				
ra:	Coefic	iente de r	eaucción de s	tress (0,4 <rd<1)< td=""><td></td><td></td><td></td><td></td><td></td><td>4 a 6</td><td>0.85</td><td>-</td><td></td><td></td><td></td><td></td></rd<1)<>						4 a 6	0.85	-				
										6 a 10	0.95	-		Désine é d. C		
										10 a 30	1			Pagina 1 de 2		

				_	INFORM		IETE												
			COP		NÓN SOT V ME														
			CON	LCC	ANÁLISIS POLI		DISS (2014)	CUACION											
					ANALISIS BOU		(133 (2014)												
Proyecto:	Muelle	vorte_Pi	Jerto Corone	91				0.0.0											
Localidad:	Corone						CRR M, sv	= CRR _{M=7.5}	_{5:σv′=1} .ΜS	SF·Kσ		Razón de	resitencia cío	clica corregida					
Sondaje Nº:	ST-2	Terrest	re																
							Factores de	corrección que	e se aplica	n al CRR	A	calculado							
Clas Sísmica	del Sue	0	i i					1			WI-7.5. SV =11								
zona sismica	3						MSE-	Eactor de esca	a de la mar	lear butine		MSE-	variable						
2018 31311108	5						10101 .	1 80101 06 6308	ia de la maç	fillitudi real		14101 .=	variable						
amax (ao)=	0.5	i g					Ko:	Corrección por	no linealida	d entre pre	esiones de	eKσ:=	variable						
	4.000																		
1 atm=	1.033	kg/cm*																1	
M=	8.8	5																	
MSF=	variable						CSR M. av	= 0.65 · (σv	/σν΄) · (ε	a	rd	Razón de	de estrés cío	lico					
	Lograd	or data					1417 34		, (.	max 37			1						
	. Ingres	aluato	1		1					1						<u> </u>	1		
	Protu	ngigag	(4)				(3) Condición	(0)								1		(3)	(3) FS
Nº de		····	Contenido	IP	Comportamient	(3)	licuación	(3)	(3) MSF	(3) MSE	(3) Co-	(3) kσ	(3) kσ	(3) CRR _{M, σν} ·	$(3) \alpha(7)$	(3) B(7)	(3) rd	CSP	= CRR
intervalos	doedo	haeta	de finos		o Suelos Finos	(N1)60cs	(N1)60cs	CRR _{M=7,5;σv'=1}	max	(0) 1101	(0) 00-	(formula)=	(mínimo)=	(corregido)	(0) ((2)	(0) p(2)	(0) 10	CON M, GV	
	uesue	Tidata	de milos				(11)0000									1		(solicitante)	CSR M, ov
	1	1	1		-					1						_		1	
	1.00	1.45	c	ND	Como Arences	2.4	2.4	0.075	1 10	0.09	0.07	1 1 1 5	1 1 5	0.093	-0.040	0.000	1.00	0.71	0.12
	1.00	1.45	-	ND	Como Arenas	3.1	3.1	0.075	1.10	0.90	0.07	1.10	1.15	0.083	-0.049	0.000	1.00	0.71	0.12
	2.00	2.45	-	INP NO	Como Arenas	15.3	15.3	0.159	1.33	0.88	0.11	1.18	1.18	0.164	-0.102	0.012	1.00	0.71	0.23
3	3.00	3.45	5	NP	Como Arenas	24.9	24.9	0.288	1.72	0.74	0.16	1.20	1.20	0.254	-0.162	0.019	1.00	0.71	0.36
4	4.00	4.45	10	NP	Como Arenas	54.7	no licuable	no licuable	2.20	0.56	no aplica	no aplica	no aplica	no licuable	-0.227	0.026	1.00	0.71	no licuable
	5.00	5.45	10	NP	Como Arenas	48.1	no licuable	no licuable	2.20	0.56	no aplica	no aplica	no aplica	no licuable	-0.299	0.034	1.00	0.71	no licuable
e	6.00	6.45	5	NP	Como Arenas	28.5	28.5	0.404	1.91	0.67	0.19	1.11	1.11	0.300	-0.376	0.042	1.00	0.71	0.43
7	7.00	7.45	5	NP	Como Arenas	24.6	24.6	0.282	1.70	0.74	0.16	1.07	1.07	0.224	-0.457	0.051	1.00	0.70	0.32
8	8.00	8.45	5	NP	Como Arenas	19.8	19.8	0.203	1.48	0.82	0.13	1.04	1.04	0.174	-0.543	0.061	0.99	0.70	0.25
c	9.00	9.45	5	NP	Como Arenas	32.4	no licuable	no licuable	2 15	0.58	0.23	1.05	1.05	no licuable	-0.632	0.071	0.99	0.70	no licuable
10	10.00	10.45	3	ND	Como Arenas	12.7	12.7	0 138	1.25	0.00	0.10	1.00	1.00	0 127	-0.723	0.081	0.00	0.70	0.18
14	11.00	11.45	3	NID	Como Arongo	14.6	14.6	0.150	1.20	0.01	0.10	1.01	1.01	0.127	0.0123	0.001	0.00	0.70	0.10
	11.00	11.45	3	INP ND	Como Arenas	14.0	14.0	0.153	1.30	0.89	0.11	1.00	1.00	0.130	-0.817	0.091	0.99	0.70	0.20
12	12.00	12.45	3	NP	Como Arenas	11.7	11./	0.130	1.23	0.92	0.10	0.99	0.99	0.118	-0.912	0.102	0.98	0.69	0.17
13	13.00	13.45	3	NP	Como Arenas	20.4	20.4	0.210	1.51	0.81	0.14	0.98	0.98	0.168	-1.008	0.112	0.98	0.69	0.24
14	14.00	14.45	58	NP	Como Arenas	33.6	no licuable	no licuable	2.20	0.56	0.24	1.04	1.04	no licuable	-1.104	0.122	0.97	0.86	no licuable
15	5 15.00	15.45	58	NP	Como Arenas	25.7	25.7	0.307	1.75	0.72	0.17	1.02	1.02	0.226	-1.199	0.133	0.97	0.86	0.26
16	6 16.00	16.45	37	NP	Como Arenas	27.5	27.5	0.365	1.85	0.69	0.18	1.01	1.01	0.253	-1.293	0.143	0.96	0.85	0.30
18	17.00	17.45	37	10	Como Arcillas	7.9	7.9	0.104	1.15	0.94	0.09	1.00	1.00	0.098	-1.385	0.153	0.96	0.85	Como Arcilla
19	20.00	20.45	22	NP	Como Arenas	89.0	no licuable	no licuable	2.20	0.56	no aplica	no aplica	no aplica	no licuable	-1.641	0.179	0.94	0.66	no licuable
20	21.00	21.45	22	NP	Como Arenas	87.5	no licuable	no licuable	2.20	0.56	no aplica	no aplica	no aplica	no licuable	-1.719	0.187	0.93	0.66	no licuable
21	22.00	22.45	22	ND	Como Arense	41.6	no licushle	no licushle	2 20	0.56	no anlies	no anlica	no anlica	no licushle	-1 701	0 195	0.02	0.65	no licuable
20	22.00	22.45	22	NID	Como Arenas	41.0	no liquoblo	no liquoblo	2.20	0.50	no oplica	no aplica	no oplica	no liquoblo	1 057	0.135	0.02	0.05	no licuable
22	20.00	20.40	22	NID	Como Arenas	45.5	no licuable	Tio licuable	2.20	0.50		1 no aplica	no aplica	no licuable	4.047	0.201	0.02	0.05	no licuable
23	24.00	24.45	30	INP .	Como Arenas	55.0	no licuable	no licuable	2.20	0.50	no aplica	i no aplica	no aplica	no licuable	-1.917	0.207	0.91	0.64	no licuable
24	25.00	25.45	35	5	Como Arenas	11.7	11./	0.131	1.23	0.92	0.10	0.92	0.92	0.110	-1.971	0.212	0.90	0.64	0.17
27	26.00	26.45	35	5	Como Arenas	7.0	7.0	0.098	1.14	0.95	80.0	0.93	0.93	0.087	-2.018	0.216	0.89	0.63	0.14
28	28.00	28.45	57	17	Como Arcillas	13.0	13.0	0.140	1.26	0.90	0.10	0.95	0.95	0.120	-2.089	0.222	0.87	0.77	Como Arcilla
31	30.00	30.45	55	7	Como Arcillas	124.9	no licuable	no licuable	2.20	0.56	no aplica	no aplica	no aplica	no licuable	-2.129	0.224	0.85	0.76	Como Arcilla
	: Fango	, terreno	sin capacid	ad de	soporte, el sister	na conformad	do por pilote +	martinete, atrav	/iesan esta a	zona solo p	oor efecto	del peso p	ropio						
	: Cota f	cha pilot	es verticales	s e inc	linados de proye	cto.													
	: Zona d	on IP≥7	tiene como	ortam	niento COMO AR	CILLA, Se de	be realizar un a	análisis de degra	adación cícl	ica "Cvclic	Softening	" para verifi	car si existira	n o no problema	s durante				
	un sísm	o Para	esta zona (II	>=7)	No es válido el a	nálisis de licu	ación COMO A	RENAS											
NOTA	(a) Hay	nlanos a	s built que ir	, ndican	que los nilotes d	e Caleta I o F	oias tenían er	tre 1 6 v 17 m d	e ficha los	nue se mir	len nasad	lo el Fango							
	Con es	o análici	e de licuació	in co	determina que el	suelo firme v	NOLICIARI	E anarece a los	16 m de pr	ofundidad	nor lo tar	to los nilote	e de Caleta	o Roise tendría	10 9 11	membe	bidos e	an suelo firme	
	001103		3 de licuacio	11, 30	determina que er	Suelo IIIIIe y	NO LICOADE	L aparece a los	To m de pr	orunuluau,	poriotai	no ios pilote	a de Caleta	Lo reojas tenuna	Tioarr	membe	101003 6	Sil 3delo IIIIIe	
Modelo const	ruido cor	a inform	nacion recop	ilada	en los siguientes	documentos:													
- 10010-01-l	TE-002-\	/B (Agos	sto 2010)																
- Informe: 89	6947 (Di	ctuc UC)	IG-2010-03	364															
REFERENCI	AS:																		
(1) Liquefaction	on Resis	ance of	Soils: Sumn	hary R	eport from the 19	96 NCEER a	nd 1998 NCEE	ER/NSF Worksh	ops										
on Evaluatio	n of Liqu	efaction	Resistance	of Soi	ils. Journal of Geo	technical and	I Geoenvironm	ental Engineerin	g/October 2	2001									
(2) Technical	Standard	s and Co	ommentaries	s for P	ort and Harbour [acilities in Ja	pan. The Over	seas Coastal Ar	ea										
Developme	nt Institut	e of Jan	an																
(3) CPT and 9	SPT Back	ad Lique	faction Triac	erina	Procedures by	W Bouland	arand IM Idri	ee Report № LIC	D/CGM-14	/01									
(3) CFT and C	ALL Date	su Lique	lacuon nigg	lening	Flocedules, by P	C.W. Boularig	er and t.w. run:	ss, Reporting OC	SD/CGIVIF14		014 04/04								
(4) Evaluating	the Pote	nualitor	Liqueraction	orCy	clic Failure of Sill	s and Clays, I	by R.W. Boula	nger and 1.M. Ior	iss, Report	Nº UCD/C	GIVI+04/01								
(5) Soil Lique	faction di	uring ear	thquakes. O	akland	J, CA:2008, by R.	W. Boulange	r and I.M. Idris:	s.											
Nomenclatura	a (3):													Tabla 2 (1)					
(N1)60cs:	N1 al 60)% de ei	nergía corre	gido p	or % de finos									longitud de la		i			
CRR M, sv':	Razón	de resist	encia cíclica											barra de	CR	i			
kσ:	Correct	ión por e	confinamien	to										sondaje (m)		1			
CSR M. sv'	Razón	le estrés	s cíclico											<3	0.75	í .			
FS:	Factor	le Secu	FS = CRR	M. sv	/ CSR M. sv			1	1	1				3a4	0.8	í			
rd:	Coefici	ente de r	educción de	stree	s (0.4crdc1)									426	0.85	1			
1	20010		GGGGGGGTU	0000	0 (0,4<10<1)			1						6a10	0.05	i			
I														10 0 20	0.90	1		Dáging 2 do 2	

								1	1					1	1	1
					ME DE GABI											
	_		CORRECT	CION SPT Y MI	EMORIA DE O	SALCULO LI	CUACION									
				ANALISIS BO	ULANGER-ID	RISS (2014)										
Proyecto:	Muelle	Sur_Pue	rto Coronel													
Localidad:	Corone	el 🛛			$N_{60} = N \cdot C_E$	C _R ,C _R ,C _S				$(N_1)_{60} = C_N$	•N ₆₀					
Sondaie Nº.	SST-1	Terrestr	è		Factores de c	orrecciones de	al valor SPT r	nedido (N)		1700 - 14	00					
conduje i i i	0011	1011000			1 4010100 40 0											
N. Amura	0				NI.	Índine de nem		and an an a state								
N. Agua:	0	m.n.r.a	aalo oblenido	o dei miome	N.	Carrasián a	erración esta	ndar medido		0	underland (0.4	0 47)				
Cota boca:	3.5	m.n.r.c	b		U _N .	Conección po	or commanie	nto erectivo		C _N =	variable (0,4	<gn<1,7)< td=""><td></td><td></td><td></td><td></td></gn<1,7)<>				
Por ser un so	ndaie ter	restre no	hav columna o	de aqua	Cc:	Corrección po	or energía de	l martinete		C==	1	60% de en	ergía			
					-					-			3			
ejerciendo so	bre carg	a hidrosta	ática, por lo tar	nto no se	C _R :	Corrección po	or díametro d	el sondaje		C _B =	1					
suma a la col	uma de F	resión ve	ertical total ov	(tonf/m ²)	C _R :	Corrección po	or longitud de	las barras		C _R =	variable					
					Ce:	Corrección m	uestreadore	s c/sin revesti	miento	C _c =	1.2					
					- 3.					- 3						
					m:	coet. inicial qu	Je debe conv	erger para de	terminar la cor	reccion por col	nfinamiento					
	Profu	indidad		Peso unitario	Presion	Dension	Indice de	(3) Indice	(0)	(3) Factores	(0)	(3)	(3) Iteración	(3) Factores	(3) Indice	(5)
N⁰ de	1	m)	Clasificación	saturado	vertical	Presion	penetracion	penetración	(3) m inicial	de corrección	(3)	Determinació	hasta	de corrección	penetración	(5)
intervalos			U.S.C.S.	estimado yt	efectiva σ`v	vertical total	estándar	Neo	nasta la	C _{N. con m}	Determinacio	n de	convergencia	C _p (Tabla 2	(N1)60	Densidad
	desde	hasta		(tonf/m ³)	(tonf/m ²)	σv (tonf/m*)	medido N	(corregido)	convergencia		n de Δ(N1)60	(N1)60cs	con m inicial	(1))	(corregido)	relativa (DR)
	0 0.00	0.04	0.0		0.00	0.50		(concigiuo)		Inicial				(1)	(concigido)	
	0 0.00	0.24	GP	2.20	0.29	0.53	0		0.05			40.00				100.0
	1 0.24	0.70	GP	2.20	0.84	1.54	32	29	0.25	1.70	0.00	48.96	0.25	0.75	49	103.2
	2 1.55	1.95	SP	2.05	2.05	4.00	29	26	0.29	1.58	0.00	41.34	0.29	0.75	41	95
	3 1.84	2.29	SP	2.05	2.40	4.69	29	26	0.30	1.53	0.00	40.03	0.30	0.75	40	93.3
	4 3.05	3.55	SP	2.05	3.73	7.28	44	42	0.24	1.27	0.00	53.53	0.22	0.80	54	107.9
	5 4.55	5.00	SM	1.85	4.25	9.25	35	36	0.27	1.26	5.32	2 50.30	0.24	0.85	45	98.9
1	6 6.03	6.48	SP-SM	1,85	5,51	11.99	20	23	0.42	1.28	0.03	3 29.32	0.37	0,95	29	79.8
	7 7.59	8.04	SM	1.85	6.83	14 87	18	21	0.40	1 16	5.60	29.49	0.37	0.95	24	72 1
	8 8.85	930	SW	1 85	7 01	17.21	62	71	0.17	1 04	5.5/	70.10	0.10	0.05	74	126.5
	0 40.00	40.77	010	1.00	1.31	00.00	02	47	0.17	1.04	0.0	44.00	0.10	0.33	14	120.0
	9 10.32	10.77	3P	2.05	11.31	22.00	30	43	0.30	0.96	0.00	41.33	0.29	1.00	41	94.0
	0 11.44	12.44	5P	2.05	13.00	25.50	34	41	0.36	0.91	0.00	37.00	0.32	1.00	3/	69.0
1	1 12.44	12.89	SP	2.05	13.53	26.42	37	44	0.36	0.90	0.00	39.82	0.30	1.00	40	93.0
1	2 13.49	13.94	SP	2.05	14.64	28.58	23	28	0.46	0.84	0.00	23.16	0.41	1.00	23	71.0
1	3 14.84	15.34	SP	2.05	16.11	31.45	38	46	0.37	0.84	0.00	38.23	0.31	1.00	38	91.2
1	4 16.40	16.85	SM	1.85	14.32	31.17	3	4	0.57	0.81	5.36	8.30	0.56	1.00	3	25.3
1	5 16.90	17.45	SM	1.85	14.83	32.28	4	5	0.52	0.81	5.61	9.52	0.55	1.00	4	29.2
1	6 17.91	18.36	ML	1.58	10.65	29.01	0	C	0.60	0.96	5.61	5.61	0.60	1.00	0	0.0
1	7 20.80	21.25	SP-SM	1.85	18.06	39.31	88	106	0.13	0.93	0.00	97.79	0.02	1.00	98	145.8
1	8 22.30	22.75	SP-SM	1.85	19.34	42.09	73	88	0.19	0.88	1.15	78.43	0.10	1.00	77	129.6
1	9 23.81	24.26	SP-SM	1.85	20.62	44.88	79	95	0.20	0.87	0.03	82.05	0.09	1.00	82	134
	0 25 27	25.62	SP-SM	1.00	21.78	47.40	50	60	0.20	0.07	0.00	47.49	0.00	1.00	47	100.8
2	1 25.27	23.02	SP-SIV	1.03	21.70	47.40 50.42	30	60	0.32	0.78	1 1 1	47.43	0.23	1.00	47	100.8
2	20.01	27.20	3P-3W	1.65	23.17	50.43	40	00	0.35	0.75	1.15	42.20	0.26	1.00	41	94.0
2	2 28.27	28.72	SM	1.85	24.41	53.13	16	19	0.49	0.65	5.43	17.83	0.46	1.00	12	51.9
2	3 29.78	30.42	SM	1.85	25.86	56.28	2	2	0.59	0.57	5.61	6.98	0.58	1.00	1	17.3
2	4 33.23	33.68	MH	1.58	19.53	53.21	10	12	0.50	0.72	5.58	3 14.17	0.49	1.00	9	43.2
2	5 34.46	34.91	ML	1.58	20.25	55.16	13	16	0.50	0.70	5.61	16.58	0.47	1.00	11	48.8
2	6 37.49	37.94	SM	1.85	32.25	70.19	38	46	0.39	0.63	4.09	32.97	0.34	1.00	29	79.2
2	7 38.93	39.21	SM	1.85	33.33	72.54	100	120	0.05	0.94	5.60	118.59	-0.05	1.00	113	156.7
2	8 40.19	40.64	MH	1.58	23.57	64.21	19	23	0.47	0.67	5.61	20.85	0.43	1.00	15	57.6
2	9 41.67	42.18	MH	1.58	24.46	66.64	0	0	0.60	0.58	5.53	5.53	0.60	1.00	0	0.0
3	0 44.02	44.47	MH	1.58	25.79	70.26	16	19	0.49	0.63	5.58	3 17.65	0.46	1.00	12	51.2
	Eange	, terreno	sin capacidad	de soporte, el s	istema conform	ado por pilote	+ martinete	atraviesan e	sta zona solo r	or efecto del p	eso propio					
	· Cota i	icha nilot	as verticales e	inclinados de n	rovecto	F F					and highlight					
	Zona	con IP>7	tiene compo	rtamiento COMO	ARCILLA So	daha raalizar u	n análicic do	degradación	cíclica "Cyclic	Softening" par	a verificar ei ev	istirán o no nrok	lamae durante			
	. 2011a	oon IF2/	, serie compoi		ol opólisis de la			asyraudul011	Signer Cycilc	contenting para	a remined a ex		sismaa uurante			
NOTA	(=) []=:	IU. Fala	esta zona (ir >		el allalisis de l	- Deise testing	ARENAS.	7 m de fieke	la a sua sa said	lan ananda al C						
NOTA:	(a) may	pianos a	is built que ind	ican que los pilot	es de Caleta L	o Rojas terilan	ende roy1	/ m de richa,	ios que se mic	en pasado el F	-ango					
	(D) EI S	ueio firm	e aparace a lo	s i u m de profur	uidad y como	a richa ha de c	unsiderarse	a partir de esa	a protundidad,	ius pilotes deb	ieron aicanzar	us 26 y 27 m d	e prorundidad	IUIAI.		
	Con es	te analisi	s de licuación,	, se determina qu	le el suelo firm	B Y NO LICUA	BLE aparece	a los 16 m d	e protundidad,	por lo tanto los	s pilotes de Ca	ieta Lo Rojas te	enorian 10 a 11	m embebidos	en suelo tirm	e
Modelo con	struido o	on la inf	omación rec	opilada en los s	siguientes doo	umentos:					-					
- 10010-01-l	TE-002-\	/B (Agos	to 2010)													
- Informe: 89	6947 (Di	ctuc UC)	IG-2010-0364	1												
REFERENCI	AS:															
(1) Liquefacti	on Resis	tance of \$	Soils: Summar	y Report from the	e 1996 NCEER	and 1998 NC	EER/NSF W	orkshops								
on Evaluatio	n of Liqu	efaction A	Resistance of	Soils. Journal of	Geotechnical a	nd Geoenviron	mental Engir	eering/Octob	er 2001							
(2) Technical	Standard	s and Co	mmentaries fo	or Port and Harbo	our Facilities in	Japan. The Ov	erseas Coas	tal Area								
Developme	nt Institut	e of Jan	an.								1					
(3) CPT and	SPT Bae	ed Liquet	action Trigger	ing Procedures	by R.W. Boular	der and LM L	riss Report		-14/01							
(4) Evaluation	the Pote	ntial for I	iquefaction or	Cyclic Failure of	Silts and Clave	by R W Bou	langer and U	M Idriss Per	ort Nº LICD/CO	SM-04/01	1					
(F) Soil Line	faction -	uning oct	hquekee C-H		V D W Douters	or and IM	ionyoi diiu I.I	runas, r.ep	000/00							
Nomerala:	racion d	ung ean	nquakes. Oaki	anu, CA:2008, D	y rvv. boulang	jei anu i.ivi. lūr	155.			Table 2 (4)						
Nomenciatu	ra (3):	001			-	-				i abia ∠ (1)		-				
(N1)60CS:	N1 al 6	u% ener	ji a corregido p	our % ae tinos						iongitud de la						
CRR M, sv':	Razón	ae resist	encia ci clica							barra de	CR	1				
ko:	Correc	ción por	confinamiento							sondaje (m)		1				
CSR M, sv':	Razón	de estrés	s cíclico							<3	0.75	1				
FS:	Factor	de Segu	FS = CRR M	1, sv´ / CSR M, sv	ŕ					3 a 4	0.8					
rd:	Coefic	ente de r	educción de s	tress (0,4 <rd<1)< td=""><td></td><td></td><td></td><td></td><td></td><td>4 a 6</td><td>0.85</td><td></td><td></td><td></td><td></td><td></td></rd<1)<>						4 a 6	0.85					
										6 a 10	0.95					
										10 a 30	1	1		Página 1 de 2		

ANEXO F: CORRECCIÓN SPT Y MCA LICUACIÓN (SST-1)

				-	INFORM		INETE												
			COPP																
			CORR				DDISS (2014	N											
				~	INALISIS BOU	JEANGER-I	DRI33 (2014	,											
Description	Maralla C	Due Due	ta Cassal																
Proyecto:	Muelle S	ur_Pue	rto Coronei																
Localidad:	Coronel						CRR M, sv	= CRR _{M=7.5}	_{5:σν′=1} .MS	i⊦∙Kσ		Razón de	resitencia ci	clica corregida					
Sondaje N°:	SST-1	Terres	tre																
							Factores de	corrección que	e se aplica	n al CRR	M=7.5: sv/=1#	calculado	:						
Clas, Sísmica	a del Sue	olo	1																
zona sismica :	3		ĺ				MSF:	Factor de esca	la de la mac	initud real		MSF:=	variable						
			1																
amax (ao)=	0.5	g					Ko:	Corrección por	no linealida	d entre pre	siones de	eKσ:=	variable						
1 otm-	1 0 2 2	1																	
i aun=	1.000	ку/спі																	
IVI=	0.0		1																
MSF=	variable						CSR M, SV	= 0,65 ·(σv	/σv´) · (a	u _{máx} /g) ∙	rd	Razón de	de estrés cío	clico					
	· Ingress	ar dato																	
	Profun	didad						1					1	1	i		-		
	(n	-)	(4)		Comportamie	(-)	(3) Condición	(0)						(3) CRR M.				(3) CSR M	(3) FS = CRR
Nº de	·····	ř	Contenido	IP	nto Suelos	(3)	licuación	(3)	(3) MSF	(3) MSF	(3) Cσ=	(3) Ko	(3) Ko		(3) α(z)	(3) B(z)	(3) rd		
intervalos	desde	hasta	de finos		Finos	(N1)60cs	(N1)60cs	CRR _{M=7,5;σv'=1}	max		. ,	(tormula)=	(minimo)=	(oorrogido)				ov (aclicitante)	m, 01 m,
														(corregido)				(solicitante)	σv'
0	0.00	0.24				ĺ	1	ĺ	Î					1	1				
1	0.24	0.70	2	NP	Como Arenas	49.0	no licuable	no licuable	2 20	0.56	no aplica	no aplica	no aplica	no licuable	-0.013	0.002	1.00	0.60	no licuable
	1 55	1 95	2	NP	Como Arense	41 3	no licuable	no licuable	2 20	0.50	no anlice	no anlies	no anlica	no licuable	-0.074	0.000	1.00	0.50	no licuable
	1.00	2 20	4	NP	Como Arenco	40.0	no licushia	no licushia	2.20	0.50	no aplica	no aplice	no aplica	no licushia	-0.002	0.011	1.00	0.64	no licushia
	1.04	2.29	4	ND	Como Amerias	40.0	no licuable	no licuable	2.20	0.50	no aplica			no licuable	-0.093	0.011	1.00	0.04	no liquet !-
4	3.05	3.55	3	NP	Como Arerias	53.5	no licustie	no licuable	2.20	0.56	no aplica			no ilcuable	0.000	0.019	1.00	0.04	no licuable
5	4.55	5.00	29		Como Arenas	50.3	no ilcuable	no licuable	2.20	0.56	no aplica			no ilcuable	-0.200	0.030	1.00	0.71	no licuable
6	6.03	6.48	6	NP	Como Arenas	29.3	29.3	0.445	1.96	0.65	0.20	1.12	1.12	0.323	-0.378	0.043	1.00	0.71	0.46
7	7.59	8.04	43	NP	Como Arenas	29.5	29.5	0.455	1.97	0.64	0.20	1.08	1.08	0.315	-0.507	0.057	0.99	0.70	0.45
8	8.85	9.30	37	NP	Como Arenas	79.1	no licuable	no licuable	2.20	0.56	no aplica	no aplica	no aplica	no licuable	-0.618	0.069	0.99	0.70	no licuable
9	10.32	10.77	3	NP	Como Arenas	41.3	no licuable	no licuable	2.20	0.56	no aplica	no aplica	no aplica	no licuable	-0.753	0.084	0.99	0.63	no licuable
10	11.44	12.44	3	NP	Como Arenas	37.1	no licuable	no licuable	2.20	0.56	no aplica	no aplica	no aplica	no licuable	-0.911	0.101	0.98	0.62	no licuable
11	12.44	12.89	4	NP	Como Arenas	39.8	no licuable	no licuable	2.20	0.56	no aplica	no aplica	no aplica	no licuable	-0.954	0.106	0.98	0.62	no licuable
12	13.49	13.94	2	NP	Como Arenas	23.2	23.2	0.252	1.63	0.77	0.15	0.94	0.94	0.183	-1.055	0.117	0.98	0.62	0.29
13	14.84	15.34	3	NP	Como Arenas	38.2	no licuable	no licuable	2 20	0.56	no anlica	no anlica	no aplica	no licuable	-1 189	0.132	0.97	0.62	no licuable
14	16.40	16.85	30	1	Como Arenas	8.3	8.3	0 107	1.16	0.00	0.00	0.97	0.97	0.007	-1 330	0.147	0.06	0.62	0.14
15	16.00	17.45	45	-	Como Aronoo	0.0	0.0	0.115	1.10	0.02	0.00	0.00	0.00	0.102	1 295	0.152	0.00	0.00	0.15
16	17.01	19.26	40	12	Como Areillos	5.5	5.5	0.000	1.10	0.93	0.09	1.00	1.00	0.103	1 466	0.155	0.90	0.08	Como Aroillos
10	00.00	10.30	52		Como Arcillas	07.0	J.0	0.090	0.00	0.90	0.00	1.00	1.00	0.085	4 704	0.101	0.95	0.04	COMO Arcillas
10	20.80	21.25	5	ND	Como Arenas	97.0	no licuable	no licuable	2.20	0.50	no aplica	i no aplica	no aplica	no licuable	-1.704	0.100	0.93	0.00	no licuable
19	22.30	22.75	10	NP	Como Arenas	78.4	no licuable	no licuable	2.20	0.56	no aplica	no aplica	no aplica	no licuable	-1.811	0.197	0.92	0.65	no licuable
20	23.81	24.26	6	NP	Como Arenas	82.1	no licuable	no licuable	2.20	0.56	no aplica	no aplica	no aplica	no licuable	-1.906	0.206	0.91	0.64	no licuable
21	25.27	25.62	9	NP	Como Arenas	47.5	no licuable	no licuable	2.20	0.56	no aplica	no aplica	no aplica	no licuable	-1.980	0.213	0.90	0.64	no licuable
22	26.81	27.26	10	NP	Como Arenas	42.3	no licuable	no licuable	2.20	0.56	no aplica	no aplica	no aplica	no licuable	-2.050	0.219	0.88	0.62	no licuable
23	28.27	28.72	32	3	Como Arenas	17.8	17.8	0.182	1.41	0.85	0.12	0.89	0.89	0.138	-2.096	0.222	0.87	0.62	0.22
24	29.78	30.42	45	3	Como Arenas	7.0	7.0	0.098	1.14	0.95	0.08	0.92	0.92	0.086	-2.129	0.224	0.85	0.60	0.14
27	33.23	33.68	68	30	Como Arcillas	14.2	14.2	0.149	1.29	0.89	0.11	0.93	0.93	0.124	-2.125	0.220	0.82	0.73	Como Arcillas
28	34.46	34.91	51	20	Como Arcillas	16.6	16.6	0.170	1.37	0.87	0.12	0.92	0.92	0.135	-2.102	0.215	0.81	0.72	Como Arcillas
31	37.49	37.94	18	NP	Como Arenas	33.0	no licuable	no licuable	2.19	0.56	0.23	0.72	0.72	no licuable	-1.993	0.200	0.79	0.56	no licuable
32	38.93	39.21	44	NP	Como Arenas	118.6	no licuable	no licuable	2.20	0.56	no aplica	no aplica	no aplica	no licuable	-1.927	0.191	0.78	0.55	no licuable
33	40.19	40.64	54	22	Como Arcillas	20.9	20.0	0.217	1.53	0.81	0.14	0.89	0.88	0.154	-1.841	0.180	0.77	0.69	Como Arcillas
33	41.67	40.04	02	27	Como Arcillas	20.3	20.3	0.217	1.55	0.01	0.14	0.00	0.00	0.134	1 724	0.167	0.77	0.03	Como Aroillas
34	41.07	42.10	60	26	Como Arcillas	17.6	176	0.089	1.12	0.90	0.00	0.93	0.93	0.079	1 550	0.107	0.77	0.08	Como Arcillas
	44.02	44.47	09	1 30	COMO AICINAS	17.0	17.0	0.180	1.40	0.85	0.12	0.00	. 0.00	0.130	=1.552	0.143	0.70	0.07	COITIO ATCIIIAS
	: Fango,	terreno	sin capacid	ad de	soporte, el sist	ema contorm	nado por pilote	+ martinete, atr	raviesan est	a zona solo	por erec	to del peso	propio						
-	: Cota fie	cha pilot	es verticales	s e inc	clinados de pro	yecto.													
	: Zona c	on IP≥7	, tiene comp	ortam	niento COMO A	RCILLA. Se	debe realizar u	n análisis de deg	gradación ci	clica "Cycl	ic Softeni	ing" para ve	rificar si exis	tirán o no probl	emas dur	ante			
	un sísm	o. Para	esta zona (II	P>=7)	No es válido e	l análisis de li	cuación COMC	ARENAS.											
NOTA:	(a) Hay p	olanos a	is built que ir	ndicar	n que los pilotes	s de Caleta L	o Rojas tenían	entre 1 6 y 17 m	i de ficha, lo	s que se n	niden pas	ado el Fanç	j0						
	Con est	e análisi	s de licuació	in, se	determina que	el suelo firme	y NO LICUA	BLE aparece a le	os 16 m de	profundida	d, por lo t	tanto los pile	otes de Cale	ta Lo Rojas ten	drían 10 :	a 11 m er	nbebio	los en suelo fin	me
Modelo cons	truido c	on la in	fomación r	ecopi	lada en los sig	quientes do	cumentos:												
- 10010-01-IT	E-002-V	B (Agos	sto 2010)			Ī													
- Informe: 89	5947 (Dic	tuc UC	IG-2010-03	864															
REFERENCIA	S:																		
(1) Liquefactio	n Recipt	ance of	Soile: Summ	any P	enort from the		2 and 1008 NC	EER/NSE Work	shops										
on Evaluation	of Lique	faction	Resistance	of Soi	le lournal of G	eotechnical s	nd Geoenviror	mental Enginee	rina/Octobe	r 2001									
(2) Technical (TOT Elque		resistance -		at and Llash a		les es The Or	intental Engineer	A	2001									
(z) recrinical a	Standard	s and C	ommentanes	STOLE	on and Harbou	ir raciilles in	Japan. The Ov	erseas Coastan	Area										
Development		or Jap	an. 		Des see d	DW D		line De 1977	LICDICOL	14/04		-							
(3) CPT and S	HI Base	u Lique	action Trigg	enng	rocedures, b	y r<.vv. Boula	nger and I.M. Io	uiss, keport Nº	UCD/CGM-	14/01									
(4) Evaluating	the Poter	ntial for	Liquefaction	or Cy	clic Failure of S	silts and Clay	s, by R.W. Bou	ianger and I.M. I	driss, Repo	rt N° UCD/	CGM-04/	01	-						
(5) Soil Liquef	action du	ring ear	thquakes. O	akland	d, CA:2008, by	R.W. Boulan	ger and I.M. Idr	ISS.											
Nomenclatur	a (3):													Tabla 2 (1)					
(N1)60cs:	N1 al 60	% de ei	nergía corre	gido p	or % de finos									longitud de la	-	ļ			
CRR M, sv':	Razón d	e resist	encia cíclica											barra de	CR				
kσ:	Correcc	ión por	confinamien	to										sondaje (m)					
CSR M, sv':	Razón d	e estrés	s cíclico											<3	0.75				
FS:	Factor d	e Seau	FS = CRR	M, sv	//CSR M, sv/									3 a 4	0.8				
rd:	Coeficie	nte de i	educción de	stres	s (0.4 <rd<1)< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td>4 a 6</td><td>0.85</td><td>1</td><td></td><td></td><td></td></rd<1)<>								1	4 a 6	0.85	1			
<u> </u>														6 a 10	0.95	i			
1												-	-	10 9 30	1	1		Página 2 de 2	
			1		1		1	1	1	1		1	1	10 4 30				· ayına z ud z	

ANEXO G: EVALUACIÓN CORRIMIENTO LATERAL (CEPA N°8/ST-2)

					IN	FORME DE C								
				MEMOF			NY CORRIM	IFNTO LATE	RAL					
					ANÁLISIS JR	A- TOKIMAT	SU & ASAKA	(1998)						
				1						1				
Proyecto:	Muelle No	orte_Pue	erto Corc	onel										
Localidad:	Coronel													
Sondaie N°	ST-2	Terrest	re											
··· •			i i											
N. Agua:	11	m.N.R.S	s	Cepa N°8, M	iuelle Norte									
Cota boca:	0	m.N.R.S	S											
Se utilizan Ic	valores	del SPT	de un sr	ondaje terresti	re luego no hav									
06 000200.00	3 400100	ue: 0: .		Jildajo torroota	e, lucgo no nay									
sobre carga	hidrostátio	ca. Sin e	mbargo	se usan estos	datos para									
evaluar licua	ción v cor	rimiento	lateral er	n la cepa Nº8	del Muelle Norte									
		0.56												
φ pilote :		0.50	m											
capas licuab	les bajo c	orteza:	7.45	1										
	,												L	
		Profu	ndidad		Peso unitario	Presion	Presion	Indice de	VOVO N		Densidad		i i	
Nº de	Cota	(m)	Clasificación	saturado	vertical	vertical total	penetracion	Aranzadi	TG=4*sum(H	relativa (DR)	Contenido	IP	Comportamient
intervalos	Cota (m) Clasifi modelo desde hasta U.S.		U.S.C.S.	estimado γt	efectiva σ v	σv (tonf/m ²)	estandar	2013	i/Vsi)	(Giuliani y	de finos		o Suelos Finos	
		u			(tonf/m ³)	(tonf/m ⁺)	, , , ,	medido IN	2010		Nicoll 1982)			
0	-11	0.00	1.00											
1	-12	1.00	1.45	SP-SM	1.85	1.23	13.68	2	106.55	0.014	28	5	NP	Como Arenas
2	-13	2.00	2.45	SP-SM	1.85	2.08	15.53	10	179.12	0.006	39	5	NP	Como Arenas
3	-14	3.00	3.45	SP-SM	1.85	2.93	17.38	18	237.72	0.004	51	5	NP	Como Arenas
4	-15	4.00	4.45	SP-SM	1.85	3.78	19.23	48	313.35	0.003	84	10	NP	Como Arenas
5	-10	5.00	5.45	SP-SM	1.85	4.03	21.08	38	345.34	0.003	/4	10	NP	Como Arenas
6	-1/	6.00	6.45	SP-SM	1.85	5.48	22.93	20	354.65	0.003	53	8	NP	Como Arenas
/	-18	7.00	1.45	SP-SM	1.85	0.33	24.78	19	385.35	0.003	52	ŏ	NP	Como Arenas
0	-13	0.00	0.40		1.00	1.10	20.03	20	430.00	0.002	50	5	ND	Como Aronoo
3	-20	9.00	9.40	SP-SIVI	1.00	0.03	20.40	12	401.55	0.002		5	ND	Como Arenas
10	-22	11.00	11.45	SP-SIM	1.05	9.00	30.33	15	445.44	0.002	45	3	NP	Como Arenas
12	-23	12.00	12 45	SP	1.85	10.58	34.03	12	500.90	0.002	40	3	NP	Como Arenas
13	-24	13.00	13.45	SP	1.85	11.43	35.88	18	551.86	0.002	49	3	NP	Como Arenas
14	-25	14.00	14.45	ML	1.58	12.01	37.46	22	591.09	0.002	53	55	NP	Como Arenas
15	-26	15.00	15.45	ML	1.58	12.59	39.04	12	572.51	0.002	39	55	NP	Como Arenas
16	-27	16.00	16.45	ML	1.58	13.17	40.62	18	625.11	0.002	48	55	NP	Como Arenas
17	-28	17.00	17.45	SC(CL)	1.58	13.75	42.20	5	555.27	0.002	25	38	20	Como Arcillas
18	-29	18.00	18.45	SC(CL)	1.58	14.33	43.78	5	328.25	0.003	25	38	20	Como Arcillas
19	-30	19.00	19.45	SC(CL)	1.58	14.91	45.36	5	334.94	0.003	25	38	20	Como Arcillas
20	-31	20.00	20.45	SM	1.85	15.76	47.21	76	690.84	0.001	97	12	NP	Como Arenas
			L	ļ		ļI	ļ	µ					<u> </u>	
	ļ		ļ			ļ ^I	ļl		ļ					ļ
	ļ	ļ	ļ			ļ ¹				ļ'				
				-		ļJ	I	·		ļ	<u> </u>			
						ļJ				ļ'				
				+		ļJ	I			<u> </u>	 			
			1		1	1					1	1	í.	
			+					1	<u> </u>					

					INFORME D						
			MEMO	ORIA DE CALC	ULO LICUA	CIÓN Y CORI	RIMIENTO LA	TERAL			
				ANÁLISIS	JRA- TOKIN	ATSU & ASA	AKA (1998)				
Proyecto:	Muelle Norte	Puerto Corone	I								
Localidad:	Coronel										
Sondaje N°:	ST-2	Terrestre									
N. Agua:	11	m.N.R.S		Cepa Nº8, Mu	elle Norte						
Cota boca:	0	m.N.R.S									
Se utilizan los	valores del SF	T de un sonda	je terrestre, lue	ego no hay							
sobre carga h	idrostática. Sin	embargo se us	san estos dato	is para							
evaluar licuac	ión y corrimient	to lateral en la c	epa N°8 del N	luelle Norte							
φ nilote	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.56	m								
φ phote :		0.50									
capas licuable	es bajo corteza	: 7.45									
N ₁	C ₁	C2	N _a	RL	R	r _d	L	FL	F∟ajustado a 1	PL	CNL
4.1	1.0	0.0	4.1	0.1	0.1	1.0	3.8	0.04	0.0	-	1.0
18.7	1.0	0.0	18.7	0.3	0.29	1.0	2.5	0.12	0.1	-	1.0
30.8	1.0	0.0	30.8	0.9	0.9	0.9	2.0	0.5	0.5	-	1.0
55.5	1.0	0.0	75.7	31.2	31.2	0.9	1.7	21.3	1.0	-	1.0
27.2	1.0	0.0	27.2	0.5	0.5	0.0	1.3	0.4	0.4	4 20	1.0
24.2	1.0	0.0	24.2	0.5	0.5	0.9	1.0	0.4	0.4	4.20	1.0
30.0	1.0	0.0	30.0	0.4	0.4	0.9	1.2	0.7	0.0	1.85	1.0
28.3	1.0	0.0	28.3	0.61	0.6	0.9	1.1	0.6	0.6	1.03	1.0
12.8	1.0	0.0	12.8	0.24	0.2	0.8	1.0	0.2	0.2	3.82	1.0
15.2	1.0	0.0	15.2	0.3	0.3	0.8	1.0	0.3	0.3	3.28	1.0
11.6	1.0	0.0	11.6	0.2	0.2	0.8	0.9	0.3	0.3	3.01	1.0
16.6	1.0	0.0	16.6	0.3	0.3	0.8	0.9	0.3	0.3	2.42	1.0
19.7	1.9	2.5	39.9	4.1	4.1	0.8	0.9	4.7	1.0	-	1.0
10.4	1.9	2.5	22.3	0.3	0.3	0.8	0.8	0.4	0.4	-	1.0
15.2	1.9	2.5	31.3	1.0	1.0	0.8	0.8	1.2	1.0	-	1.0
4.1	1.6	1.6	7.9	0.2	0.2	0.7	0.8	0.2	1.0	-	1.0
4.0	1.6	1.6	7.8	0.2	0.2	0.7	0.8	0.2	1.0	-	1.0
3.9	1.6	1.6	7.6	0.2	0.2	0.7	0.8	0.2	1.0	-	1.0
56.8	1.0	0.1	59.1	45.2	45.2	0.7	0.7	61.5	1.0		1.0
										24.0	
				+		+			+		
		-		+		+					
	1			1		1	1		1		
		1		+		1	1		1		
		1		1		1	1		1		
	1	1		1		1	1		1		
										Página 2 de 4	

						IN	ORME DE G						
				MEMORIA	DF (O LICUACIÓ	N Y CORR		ATERAI			
					ANÁI	ISIS JR	A- TOKIMAT	SU & ASA	KA (1998)				
				-									
	1kgf/cm3=980	06 kN/m3											
	kN/m3=0,000	102 kgf/cm3											
	Manual de Ca	rreteras: Tabla	3,1003,302(2)	A				Norme Jap	onesa: Tabla	T-4,3,3 Valu	ue of nh		
		coe	ficiente f (kgf/c	:m3)				O and in the	nh (kN/m ³)				
	sueio	DR=30 a 40%	DR=41 a 65	DR=66 a 90%				Condicion	loose	medium	Dense		
	arena bajo napa	0,19-0,38	0,4-0,85	0,87-1,45				DR (%)	0-35	35-65	65-100		
	arena bajo napa	0.285	0.625	1.16				seco	2200	6600	17600		
								sum	1300	4400	10800		
													3
n _h (kN/m ³)	k _{h_NJ} (kN/m3)	k _{h_YYenYYin} (kN/m3)	f_ _{MCvol3} (kN/m3)	k _{h_MCvol3} (kN/m3)	ф	(°)	∲_Yen&Yin (°)	Kp	q _{NL} (kN/m2)	q∟ (kN/m2)	q _{NL} (kN/m)	q∟ (kN/m)	P _e (z) (Yen Y. & Yin Y.) (kN/m ²)
												ļ	
1300	2321	5471	1863	4342		24.9	27.8	2.75	0.00	0.00	0.00	0.00	91
4400	15714	27356	2795	11004		31.1	35.1	3.70	0.00	0.00	0.00	0.00	196
4400	23571	49240	6129	33982		34.8	37.5	4.10	0.00	0.00	0.00	0.00	323
10800	77143	131307	11375	81351		44.2	41.8	4.99	188.74	0.00	105.70	0.00	637
10800	96429	103951	11375	99632		41.6	40.3	4.66	215.80	0.00	120.85	0.00	687
4400	47143	54711	6129	63531		35.7	36.9	4.00	0.00	13.60	0.00	7.61	624
4400	55000	51976	6129	73381		35.3	36.3	3.90	0.00	19.15	0.00	10.72	709
4400	62857	68389	6129	83231		37.5	37.3	4.08	0.00	24.70	0.00	13.83	886
4400	70714	68389	6129	93080		37.5	37.0	4.03	0.00	30.25	0.00	16.94	991
4400	78571	32827	6129	102930		32.1	33.3	3.43	0.00	35.80	0.00	20.05	872
4400	86429	41033	6129	112780		33.6	34.1	3.55	0.00	41.35	0.00	23.15	1014
4400	94286	32827	2795	55919		32.1	32.8	3.36	0.00	46.90	0.00	26.26	1039
4400	102143	49240	6129	132479		34.8	34.5	3.61	0.00	52.45	0.00	29.37	1258
4400	110000	60182	6129	142329		36.4	35.3	3.74	449.00	0.00	0.00	0.00	1413
4400	117857	32827	2795	69394		32.1	32.2	3.29	414.02	0.00	0.00	0.00	1236
4400	125714	49240	6129	162029		34.8	34.1	3.54	466.96	0.00	0.00	0.00	1449
1300	39464	13678	1863	52251		27.8	27.8	2.74	377.45	0.00	0.00	0.00	113
1300	41786	13678	1863	55245		27.8	27.6	2.73	391.32	0.00	0.00	0.00	1183
1300	44107	13678	1863	58240		27.8	27.5	2.72	405.09	0.00	0.00	0.00	1231
10800	385714	207903	14219	467313		50.5	40.4	4.68	737.82	0.00	0.00	0.00	3671

						INFORME DE	GABINET	E						
				MEMORIA	A DE CALC	ULO LICUACIO	ÓN Y COF		ATERAL					
					ANÁLISIS	JRA- TOKIMA	TSU & AS	AKA (1998)						
Proyecto	Muelle Norte	Puerto Coror	hel											
Localidad	Coronel													
Sondaie	ST-2	Terrestre												
Sonuaje i	01-2	reneste												
N Aqua	11	mNRS		Cepa Nº8 Mi	elle Norte									
Cota boca	0	m.N.R.S		oopun o, m										
	Ū													
Se utilizan	los valores d	el SPT de un s	sondaje terrestr	e, luego no ha	iy									
sobre carg	a hidrostática	a. Sin embargo	se usan estos	datos para										
evaluar licu	lación y corri	miento lateral e	en la cepa N°8 (del Muelle Nor	te									
φ pilote		0.56	m											
+ p														
capas licua	ables bajo co	rteza		7.45										
σ _{HP_MC} (kN/m ²)	F _{HP_Y.Yen} Y.Yin	F _{HP=qnl(resporte}	F _{HP=qnl(resorte}	∆=F _{HP/} KH (m)	kH (kN/m)	d _{ls_} CapInfNL		D _E (Level 2)	D _E	k _h .D _E (kN/m3)	k _h .D _E (kN/m)	σ _{HZ} kN/m2	Ver. Plast.
Ì Í	(KN)	(KN)	(KN)			(m)	FL<=1/3	1/3 <fl<=2 3<="" th=""><th>2/3<fl<=1< th=""><th></th><th></th><th></th><th></th><th></th></fl<=1<></th></fl<=2>	2/3 <fl<=1< th=""><th></th><th></th><th></th><th></th><th></th></fl<=1<>					
						2.93								
102	76		0	0.0000	0	2.93	0.00	-	-	0.00	0	0	0	Verifica
231	110		0	0.0000	0	2.93	0.00	-	-	0.00	0	0	0	Verifica
361	181		0	0.0000	18383	2.93	-	0.67	-	0.67	32827	18383	96182	Plastifica
566	357		106	0.0014	73532	2.93	-	-	1.00	1.00	131307	73532	384730	Plastifica
647	385		121	0.0021	58213	2.93	-	-	1.00	1.00	103951	58213	304578	Plastifica
658	350		8	0.0004	20426	2.92	-	0.67	-	0.67	36474	20426	106389	Plastifica
741	397		11	0.0022	4851	2.79	0.17	-	-	0.17	8663	4851	24205	Plastifica
879	496		14	0.0004	38298	2.55	-	-	1.00	1.00	68389	38298	174234	Plastifica
971	555		17	0.0007	25532	2.19	-	0.67	-	0.67	45593	25532	99775	Plastifica
914	488		20	0.0033	6128	1.73	0.33	-	-	0.33	10942	6128	18954	Plastifica
1036	568		23	0.0030	7660	1.20	0.33	-	-	0.33	13678	7660	16403	Plastifica
1066	582		26	0.0043	6128	0.61	0.33	-	-	0.33	10942	6128	6710	Plastifica
1238	704	352	29	0.0383	9191	0.00	0.33	-	-	0.33	16413	9191	0	Verifica
1347	/91	791	0	0.0157	50553	0.00	-	-	1.00	1.00	60182	50553	0	Verifica
1242	692	692	0	0.0565	12255	0.00	-	0.67	-	0.67	21885	12255	0	Verifica
1132	636	636	0	0.0294	7660	0.00	-	-	1.00	1.00	49240	7660	0	Verifica
1174	662	662	0	0.0050	7660	0.00		-	1.00	1.00	13678	7660	0	Verifica
1215	689	689	0	0.0900	7660	0.00	-	-	1.00	1.00	13678	7660	0	Verifica
2213	2056	1028	0	0.0088	116426	0.00	-	-	1.00	1.00	207903	116426	0	Verifica
			·											
				1										
								Ì						
				ļ										
											F	Página 4 de 4	4	

ANEXO H: CALCULOS ESTRUCTURALES PILOTE Y SOLDADURA

Noma utilizada para las verificaciones, AISC Pilote cepa N°8/Muelle Norte Acero A252 Gr. 3, Soldadura E70XX (Fmw = 393 MPa)

 F_y : Tensión de fluencia (ksi)E: Módulo de elasticidad (MPa)Ø: diametro del pilote (mm)e: espesor del pilote (mm)A: Sección transversal (mm²)I: Inercia pilote (mm⁴) = $618 \times 10^6 (mm^4)$ S: Modulo de la sección (mm³) = 2213700 (mm³)Z: Modulo Plastico (mm³) = 2866700 (mm³)r: radio de giro (mm) = 194,3 (mm)

 $F_y = 60 \text{ ksi} = 413 \text{ MPa}$ E = 210000 MPa

Evaluación flexión:

Los esfuerzos fueron obtenidos del análisis del pilote de la cepa N°8 sometido a presiones de flujo antes de la falla, los cuales se resumen en la Tabla 4-1.

$$\frac{D}{t} = \frac{559}{9,5} = 58,8$$

$$\lambda_{p} = 0.07 \cdot \left(\frac{E}{F_{y}}\right) = 0.07 \cdot \left(\frac{210000}{413}\right) = 35,5$$

$$\lambda_{r} = 0.31 \cdot \left(\frac{E}{F_{y}}\right) = 0.31 \cdot \left(\frac{210000}{413}\right) = 157,6$$

Luego se cumple que:

$$\lambda_{p} < \frac{D}{t} < \lambda_{r} \qquad \text{Implica Sección No Compacta.}$$

$$M_{n} = \left(\frac{0,021 \cdot E}{\frac{D}{t}} + F_{y}\right) \cdot S = \left(\frac{0,021 \cdot 210000}{58,8} + F_{y}\right) \cdot 2213700 = 108 \text{ ton} - m$$

 ${\rm \emptyset M}_{\rm n}$ = 0,9 \cdot 108 = 97,2 ton - m = 972 kN - m \cdot

(Verifica el momento solicitante, Mu=562,8 kN-m)

Evaluación Compresión:

Los esfuerzos fueron obtenidos del análisis del pilote de la cepa N°8 sometido a presiones de flujo antes de la falla, los cuales se resumen en la Tabla 4-1.

$$\lambda_{l} = 0.45 \cdot \left(\frac{E}{F_{y}}\right) = 0.45 \cdot \left(\frac{210000}{413}\right) = 228.8$$
$$\lambda_{r} = 0.11 \cdot \left(\frac{E}{F_{y}}\right) = 0.11 \cdot \left(\frac{210000}{413}\right) = 55.8$$

Luego se cumple que:

$$\begin{split} \lambda_r &< \frac{D}{t} < \lambda_l & \text{Implica Sección Esbelta en Compresión.} \\ Q &= \frac{0,038 \cdot E}{F_y \cdot (\frac{D}{t})} + \frac{2}{3} = \frac{0,038 \cdot 210000}{413 \cdot (58,8)} + \frac{2}{3} = 0,99 \\ \lambda &= \left(\frac{k \cdot L}{r}\right) = \left(\frac{1 \cdot 37000}{194,3}\right) = 190,42 \\ F_e &= \frac{\pi^2 \cdot E}{\lambda^2} = \frac{\pi^2 \cdot 210000}{190,42^2} = 57,2 \text{ MPa} \\ F_{cr} &= 0,877 \cdot 57,2 = 50,12 \text{ MPa} \\ \emptyset P_n &= 0,9 \cdot 50,12 \cdot 16400 = 73,8 \text{ ton} = 738 \text{ kN} \end{split}$$

(Verifica la carga vertical, Pu=117 kN)

Evaluación Corte:

Los esfuerzos fueron obtenidos del análisis del pilote de la cepa N°8 sometido a presiones de flujo antes de la falla, los cuales se resumen en la Tabla 4-1.

$$\begin{split} F_{cr} &= max\{F_{cr1}|F_{cr2}\}\\ F_{cr} &< 0,6 \cdot F_{y} = 248 \ MPa\\ F_{cr1} &= \frac{1,6 \cdot E}{\sqrt{\frac{L_{v}}{D}} \cdot \left(\frac{D}{t}\right)^{\frac{5}{4}}} = \frac{1,6 \cdot 210000}{\sqrt{\frac{20000}{559}} \cdot \left(\frac{559}{9,5}\right)^{\frac{5}{4}}} = 344,7 \ MPa\\ F_{cr2} &= \frac{0,78 \cdot E}{\left(\frac{D}{t}\right)^{\frac{3}{2}}} = \frac{0,78 \cdot 210000}{\left(\frac{559}{9,5}\right)^{\frac{3}{2}}} = 362,9 \ MPa\\ F_{cr} &= 248 \ MPa\\ \emptyset V_{n} &= 0,9 \cdot 248 \cdot \frac{16400}{2} = 182,9 \ ton = 1829 \ kN \end{split}$$

Verifica el corte solicitante, Vu=61 kN

Evaluación Soldadura Capitel

Los Esfuerzos fueron obtenidos del análisis del pilote de la cepa N°8 sometido a presiones de flujo antes de la falla, los cuales se resumen en la Tabla 4-1.

Soldadura: E70XX: Fmw = 393 MPa, resistencia a la fluencia de electrodo Fmw = $0,0393 \frac{tonf}{mm^2} = 39300 \frac{tonf}{m^2}$ <u>Análisis por corte:</u> Area = $\pi \cdot D \cdot tc = \pi \cdot 559 \cdot 0,7 \cdot 9,5 = 11792 mm^2$ $\emptyset R_n = \emptyset \cdot Fmw \cdot Area$ $\emptyset R_n = 0,75 \cdot 0,039300 \cdot 11792 = 347,6 ton = 34,7 kN$ (No verifica el corte solicitante en la unión soldada, Vn=61 kN)

$$\frac{Análisis por flexión:}{Sw = \frac{\pi}{64} \cdot \frac{\left(D_e^2 - D_i^2\right)}{\frac{D_i}{2}} = 2215310 \ mm^3$$
$$\emptyset R_n = \emptyset \cdot Fmw \cdot Sw$$
$$\emptyset R_n = 0.9 \cdot 0.039300 \cdot 2215310 = 78.6 \ ton - mm = 783 \ kN - m$$

(Verifica la flexión en la unión soldada, Vn=562,8 kN-m)