

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE Escuela de Ingeniería

NUEVO MÉTODO DE LANZAMIENTO DE UN PUENTE METÁLICO EN ARCO ATIRANTADO DE 150 METROS

EDGAR RICARDO BERMUDEZ MEJIA

Informe de Actividad de Graduación para optar al Grado de Magíster en Ingeniería Estructural y Geotécnica

Profesor Supervisor: HERNÁN SANTA MARÍA OYANEDEL

Santiago de Chile, Marzo, 2024.

(A mi familia, hermanos y amigos,que me apoyaron mucho...)(Dedicatoria)

AGRADECIMIENTOS

Agradezco de manera muy especial a mi madre, Betty Mejía, por todo el apoyo incondicional y los sabios consejos que me ha brindado a lo largo de mi vida hasta el día de hoy. Su amor y orientación han sido fundamentales en mi camino hacia el éxito.

También quiero expresar mi profundo agradecimiento a mis respetados profesores del programa académico del magíster. Su excepcional metodología de enseñanza y dedicación para transmitir sus conocimientos en cada especialidad ha sido inspiradora y enriquecedora para mi desarrollo académico y profesional.

Agradezco sinceramente a Elena Cornejo, coordinadora del programa, por su invaluable ayuda y atención oportuna durante mi etapa de formación. Su apoyo y las herramientas adecuadas que proporcionó para aplicar en las asignaciones académicas han sido cruciales para mi éxito académico.

A mis estimados compañeros de trabajo en Sima Perú, agradezco la oportunidad que me brindaron de formar parte de su equipo. Trabajar en proyectos que implican la materialización de diversos componentes de tipologías de puentes en la parte constructiva ha sido un desafío gratificante y enriquecedor para mi crecimiento profesional.

Asimismo, quiero expresar mi gratitud a mis colegas en Gestruc Ingenieros por permitirme participar en diferentes proyectos de infraestructura vial. La experiencia adquirida trabajando con ustedes ha sido invaluable y me ha brindado una perspectiva más amplia sobre los desafíos y oportunidades en el campo de la ingeniería civil.

A mis compañeros del magíster, les agradezco por su constante apoyo y compañía a lo largo de estos últimos años. Sus palabras de aliento y colaboración han sido un pilar fundamental en mi trayectoria académica y personal.

Por último, agradecimiento al profesor Hernán Santa Maria por su generosidad, tiempo y acompañamiento durante el desarrollo de la presente actividad de graduación.

INDICE GENERAL

Pág.

DEDI	CATORIAii
AGRA	ADECIMIENTOSiii
INDIC	CE DE TABLASvii
INDIC	CE DE FIGURASviii
RESU	MENxv
ABST	RACTxvi
1.	INTRODUCCIÓN11.1. Objetivos11.1.1. Objetivo general11.1.2. Objetivos específicos11.2. Hipótesis del trabajo21.3. Alcances y Limitaciones de la Investigación21.4. Problema estructural2
2.	DATOS DE DISEÑO32.1. Descripción de la estructura32.2. Ubicación del puente32.3. Geometria del modelo42.4. Cargas Permanentes42.4.1. Peso propio (DC)42.4.2. Carga muerta (DW)4Acero para torres temporales4
-	Acero para tirantes5Pernos conectores.5Placa colaborante52.5. Cargas Variables52.5.1. Sobrecarga Vehicular (LL)52.5.2. Frenado (BRK)5

	2.5.3. Viento (WS)	6
	2.5.4. Viento sobre la sobrecarga (WL)	8
	2.5.5. Variación de temperatura uniforme (TU)	
	2.5.6. Variación de gradiente de temperatura (TPG)	
	2.5.7. Sobrecarga zonas peatonales (PL)	9
	2.6. Demanda sísmica	10
	2.7. Combinaciones de Carga	10
	2.8. Secciones de los elementos estructurales	11
	3.1. Estado límite de deformaciones de la estructura	13
	3.2. Reacciones en los Apoyos	14
4.	ETAPAS CONSTRUCTIVAS para el montaje y lanzamiento	17
	4.1. Esquemas de lanzamiento	17
5.	LANZAMIENTO INCREMENTAL	
6.	PROPUESTA DE apoyos deslizantes ARTICULADOS	
	6.1. Contactos y mallado	
	6.2. Asignación de cargas y apoyos	
	6.3. Solución de esfuerzos	
	6.4. Resultados del apoyo articulado	
	6.5. Discretización con malla automática	46
	6.6. Discretización con malla tetraédrica	
	6.7. Gráfica comparativa de malla automática y tetraédrica	50
7.	propuesta de TORRES TEMPORALES	51
	7.11. Tabla resumen	60
	7.12 Tablas comparativas	61
8.	CONCLUSIONES Y RECOMENDACIONES	63
BI	3LIOGRAFIA	64
A١	N E X O S	65
An	exo A : DISEÑO DE ESTRUCTURAS TEMPORALES	66
	Propuesta de Nariz delantera	67

DISEÑO DE CÁMARA DE TIRO	. 68
DISEÑO DE CÁMARA DE RETENIDA	. 70
VERIFICACIÓN OREJA DE TIRO	. 72

INDICE DE TABLAS

Pág.

Tabla 1: Valores de las constantes Vo y Zo 6
Tabla 2: Presiones básicas, PB , correspondientes a uan velocidad Vs=100 mph7
Tabla 3: Base pressures, PB Corresponding to VB=160 km/hr7
Tabla 4: Rangos de Temperatura (°C)
Tabla 5: Temperaturas que definen los Gradientes (°C)9
Tabla 6: Secciones de vigas longitudinales tipo cajon inferior y superior
Tabla 7: Secciones de vigas transversales tipo cajon inferior y superior
Tabla 8: Sección de vigas transversal inferior de alma llena 12
Tabla 9: estados de carga del puente
Tabla 10: Comparativa con malla automática
Tabla 11: Comparativa con malla tetraédrica
Tabla 12: Discretización con malla automática 48
Tabla 13: Discretización con malla tetraédrica 49
Tabla 14: Tamaño de elementos
Tabla 15: Resumen de Caso 1 60
Tabla 16: Resumen de Caso 2 60
Tabla 17: Distribución de torones (stands) considerando condiciones de servicio 67

INDICE DE FIGURAS

Pág.
Figura 2-1 Asignación de cargas de viento7
Figura 2-2 Positive Vertical Temperature Gradient in Concrete and Steel Superestructures 9
Figura 2-3 Espectro sísmico de cálculo10
Figura 2-4 Espectro sísmico de cálculo12
Figura 2-5 Vista en elevación identificando las secciones longitudinales
Figura 2-6 Modo 1 , T=0.8607 y frecuencia f=1.1618513
Figura 2-7 Modo 2 , T=0.77078 y frecuencia f=1.2973813
Figura 2-8 Modo 2 , T=0.61652 y frecuencia f=1.6220114
Figura 2-9 Cargas máximas debido al acero estructural14
Figura 2-10 Cargas máximas debido a la losa14
Figura 2-11 Cargas máximas debido a las barandas, barreras y asfalto 15
Figura 2-12 Cargas máximas debido a la vehicular HL93 del Aashto lrfd15
Figura 2-13 Cargas máximas debido al Sismo longitudinal EQx 15
Figura 2-14 Cargas máximas debido al Sismo transversal EQy 16
Figura 4-1 Vista en planta para el montaje y lanzamiento17
Figura 4-2 Vista elevación de montaje y lanzamiento de propuesta 01 considerando torres con pedestal

Figura 4-3 Vista elevación de montaje y lanzamiento de propuesta 01 considerando torres
sin pedestal17
Figura 5-1 punto de control en la viga tirante delantera (arranque)18
Figura 5-2 Superposición de desplazamientos relativos para SRVI+ 19
Figura 5-3 Superposición de desplazamientos relativos para RI 19
Figura 5-4 Superposición de desplazamientos relativos para RIII+ 20
Figura 5-5 Superposición de desplazamientos relativos para EEX+ 20
Figura 5-6 Superposición de desplazamientos relativos para EEX 21
Figura 5-7 Superposición de desplazamientos relativos para EEY+ 21
Figura 5-8 Superposición de desplazamientos relativos para EEY 22
Figura 5-9 Comparativa de desplazamientos de propuesta 1
Figura 5-10 Comparativa de desplazamientos de propuesta 2
Figura 5-11 Comparación de desplazamientos picos en mm para la solicitación SRVI+ 23
Figura 5-12 Comparación de desplazamientos picos en mm para la solicitación RI. 24
Figura 5-13 Comparación de desplazamientos picos en mm para la solicitación RIII+24
Figura 5-14 Comparación de desplazamientos picos en mm para la solicitación EEX+ 24
Figura 5-15 Comparación de desplazamientos picos en mm para la solicitación EEX-25
Figura 5-16 Comparación de desplazamientos picos en mm para la solicitación EEY+ 25
Figura 5-17 Comparación de desplazamientos picos en mm para la solicitación EEY-25

Figura 5-18 esfuerzos relativos para SRVI+	5
Figura 5-19 esfuerzos relativos para RI	5
Figura 5-20 esfuerzos relativos para RIII+	7
Figura 5-21 esfuerzos relativos para EEX+	7
Figura 5-22 esfuerzos relativos para EEX	8
Figura 5-23 esfuerzos relativos para EEY+	8
Figura 5-24 esfuerzos relativos para EEY	9
Figura 5-25 esfuerzos de propuesta 1	9
Figura 5-26 esfuerzos de propuesta 2	0
Figura 5-27 fuerza cortante de propuesta 1	0
Figura 5-28 fuerza cortante de propuesta 2	1
Figura 5-29 momento flector de propuesta 1	1
Figura 5-30 momento flector de propuesta 2	2
Figura 6-1 Contactos reconocidos por el programa y el tipo de contacto	3
Figura 6-2 Asignación de la longitud del elemento	4
Figura 6-3 Mallado generado en el apoyo estructural	4
Figura 6-4 Asignación de soportes fijos en la base de la estructura	5
Figura 6-5 Distribución de la carga de presión en la superficie de contacto	5
Figura 6-6 Selección de las soluciones a analizar	5

Figura 6-7 Materiales asignados a la estructura	. 36
Figura 6-8 Superficie con área de 1.420914 m^2	. 37
Figura 6-9 Superficie con área de 0.96574 m ²	. 37
Figura 6-10 Asignación del material A709 grado 50	. 38
Figura 6-11 esfuerzo equivalente para el material A709 grado 50	. 38
Figura 6-12 esfuerzo equivalente para una longitud de elemento de 0.08 m	. 39
Figura 6-13 esfuerzo equivalente para una longitud de elemento de 0.075 m	. 39
Figura 6-14 esfuerzo equivalente para una longitud de elemento de 0.070 m	. 40
Figura 6-15 esfuerzo equivalente para una longitud de elemento de 0.065 m	. 40
Figura 6-16 esfuerzo equivalente para una longitud de elemento de 0.063 m	. 40
Figura 6-17 esfuerzo equivalente para una longitud de elemento de 0.0610 m	. 41
Figura 6-18 esfuerzo equivalente para una longitud de elemento de 0.0608 m	. 41
Figura 6-19 esfuerzo equivalente para una longitud de elemento de 0.0606 m	. 41
Figura 6-20 esfuerzo equivalente para una longitud de elemento de 0.0604 m	. 42
Figura 6-21 esfuerzo equivalente para una longitud de elemento de 0.0602 m	. 42
Figura 6-22 esfuerzo equivalente para una longitud de elemento de 0.15 m	. 43
Figura 6-23 esfuerzo equivalente para una longitud de elemento de 0.10 m	. 43
Figura 6-24 esfuerzo equivalente para una longitud de elemento de 0.09 m	. 43
Figura 6-25 esfuerzo equivalente para una longitud de elemento de 0.08 m	. 44

Figura 6-26 esfuerzo equivalente para una longitud de elemento de 0.07 m
Figura 6-27 esfuerzo equivalente para una longitud de elemento de 0.069 m 44
Figura 6-28 esfuerzo equivalente para una longitud de elemento de 0.068 m
Figura 6-29 esfuerzo equivalente para una longitud de elemento de 0.067 m
Figura 6-30 esfuerzo equivalente para una longitud de elemento de 0.066 m
Figura 6-31 esfuerzo equivalente para una longitud de elemento de 0.065 m 46
Figura 6-32 esfuerzo equivalente para una longitud de elemento de 0.0647 m 46
Figura 6-33 Malla generada para una longitud de elemento de 0.5 m
Figura 6-34 Malla generada para una longitud de elemento de 0.1 m
Figura 6-35 Malla generada para una longitud de elemento de 0.06 m 47
Figura 6-36 Malla generada para una longitud de elemento de 0.5 m
Figura 6-37 Malla generada para una longitud de elemento de 0.1 m 49
Figura 6-38 Malla generada para una longitud de elemento de 0.0647 m 49
Figura 6-39 Grafico de malla automática 50
Figura 6-40 Grafico de malla tetraédrica 50
Figura 7-1 Asignación de materiales en torre temporal
Figura 7-2 Creación del mallado para el análisis 52
Figura 7-3 Asignación de la carga
Figura 7-4 Deformación total

Figura 7-5 Esfuerzo equivalente
Figura 7-6 Deformación total53
Figura 7-7 Esfuerzo equivalente
Figura 7-8 Deformación total54
Figura 7-9 Esfuerzo equivalente54
Figura 7-10 Deformación total55
Figura 7-11 Esfuerzo equivalente55
Figura 7-12 Deformación total55
Figura 7-13 Esfuerzo equivalente
Figura 7-14 Deformación total56
Figura 7-15 Esfuerzo equivalente
Figura 7-16 Deformación total57
Figura 7-17 Esfuerzo equivalente
Figura 7-18 Deformación total57
Figura 7-19 Esfuerzo equivalente
Figura 7-20 Deformación total58
Figura 7-21 Esfuerzo equivalente
Figura 7-22 Deformación total59
Figura 7-23 Esfuerzo equivalente

Figura 7-24 Comparación de las deformaciones	
Figura 7-25 Comparación del esfuerzo equivalente	
Figura 7-26 Comparación de la fuerza axial 61	
Figura 7-27 Comparación del momento flector total	
Figura 7-28 Comparación del esfuerzo cortante	
Figura 7-29 Comparación del máximo esfuerzo combinado	
Figura 0-1 Fuerzas axiales en cables de tiro y retenida en volado de 48m por Resiste (tonf)	encia
Figura 0-2 Fuerzas axiales en cables de tiro y retenida en volado de 51m Resistencia (1 66	tonf)
Figura 0-3 Resistencia máxima de cable de 5/8" R=16.2 tonf	
Figura 0-4 Resumen de Ratios en Resistencia de torres de izaje	
Figura 0-1 Geometría de cámara de anclaje (mm)68	
Figura 0-2 Cargas máximas en el tiro de Puente	
Figura 0-1 Geometría de cámara de retenida70	
Figura 0-2 Cargas máximas en la retenida de Puente	

RESUMEN

Una vez que se han fabricado los componentes del puente, se inicia la fase de montaje en el sitio en la margen derecha. Las secciones tipo cajón del puente se ensamblan y se conectan entre sí utilizando equipos de elevación y técnicas de soldadura especializadas. Durante esta etapa, es crucial garantizar la alineación y el nivelado adecuados para garantizar la estabilidad estructural del puente.

Además del montaje de las secciones del puente, también se deben construir apoyos temporales en el cauce para sostener el puente durante el proceso de lanzamiento. Estos apoyos pueden incluir estructuras temporales de acero o concreto diseñadas específicamente para soportar el peso del puente definitivo durante su instalación, proponiéndose dos casos de estudio y reportar los resultados de la respuesta estructural.

El lanzamiento del puente puede ser empujado o lanzado gradualmente hacia su posición final utilizando sistemas de empuje hidráulico. Este proceso requiere una cuidadosa coordinación y control para garantizar que el puente se mueva suavemente y se asiente correctamente en su lugar.

Una vez que el puente ha sido lanzado con éxito, se realizan ajustes finales para garantizar que esté correctamente alineado y nivelado.

En resumen, el montaje y lanzamiento de puentes arco es un proceso técnico que requiere una combinación única de habilidades técnicas, experiencia y creatividad. Desde la planificación inicial hasta la ejecución final, cada paso en la construcción de un puente arco representa un logro monumental en la ingeniería estructural y una celebración del ingenio humano.

ABSTRACT

Once the bridge components have been manufactured, the assembly phase begins at the site on the right bank. The box sections of the bridge are assembled and connected together using lifting equipment and specialized welding techniques. During this stage, it is crucial to ensure proper alignment and grading to ensure the structural stability of the bridge.

In addition to the assembly of the bridge sections, temporary supports must also be constructed in the channel to support the bridge during the launching process. These supports may include temporary steel or concrete structures specifically designed to support the weight of the final bridge during its installation, proposing two case studies and reporting the results of the structural response.

The bridge launch can be gradually pushed or launched towards its final position using hydraulic thrust systems. This process requires careful coordination and control to ensure that the bridge moves smoothly and sits properly in place.

Once the bridge has been successfully launched, final adjustments are made to ensure it is properly aligned and level.

In short, erecting and launching arch bridges is a technical process that requires a unique combination of technical skills, experience and creativity. From initial planning to final execution, each step in the construction of an arch bridge represents a monumental achievement in structural engineering and a celebration of human ingenuity.

1. INTRODUCCIÓN

Se ha optado por el método de lanzamiento de la estructura metálica definitiva siendo un puente en arco atirantado de tablero inferior.

Para la fabricación del arco, el empleo del acero estructural conduce a la solución más económica. Las secciones transversales se eligen de forma que sus características sean compatibles con la función estructural de cada elemento. La compatibilidad entre los elementos y las uniones también es un aspecto importante en la selección de las secciones transversales. En esta selección tampoco se desprecian los aspectos estéticos ya que la percepción de la estructura por parte del usuario depende fuertemente de las secciones longitudinales y transversales.

1.1. Objetivos

1.1.1. Objetivo general

Verificar los elementos estructurales del puente definitivo y temporales mediante el análisis por etapas constructivas en las distintas etapas de lanzamiento durante la construcción, reportar los resultados de los casos analizados para conocer la mejor opción ingenieril y aplicación en proyectos similares.

1.1.2. Objetivos específicos

- Comparativa de los desplazamientos, esfuerzos, cortantes y momentos flectores en el punto de control de la superestructura y torres temporales debidos al método de lanzamiento.
- Diseño de estructuras temporales
- Comparativa de cómputos métricos de propuestas de torres temporales

1.2. Hipótesis del trabajo

Se estudian dos propuestas técnicas del método de lanzamiento viables para la aplicación de proyectos similares y concluir con la mejor opción.

1.3. Alcances y Limitaciones de la Investigación

El presente trabajo ha limitado a los siguientes aspectos:

- Se considera como único caso de estudio la superestructura del puente y estructuras temporales.
- no se considera la interacción suelo estructura en el presente estudio
- Se considera un comportamiento lineal elástico de los elementos estructurales de la superestructura del puente, las torres provisionales y estructuras temporales.

De acuerdo a estas limitantes las conclusiones obtenidas en el presente trabajo no necesariamente podrán ser extrapoladas a otros casos.

1.4. Problema estructural

El método de lanzamiento se basa en desplazar progresivamente la superestructura desde un extremo hasta llegar a su posición final sobre los apoyos deslizantes de las torres temporales, la superestructura durante el método de empuje o lanzamiento pasa por diferentes escenarios que requiere el conocimiento de los resultados debido a diferentes factores como topográficos, climático, etc. Proponiéndose soluciones con métodos constructivos aplicables a la realidad del proyecto eligiéndose la mejor opción técnica y económica.

2. DATOS DE DISEÑO

2.1. Descripción de la estructura

Para su construcción se ha optado por el lanzamiento de la estructura, por lo que se hace necesaria la utilización de una serie de elementos auxiliares que permitan su movimiento.

Tipo de Puente	: Arco Atirantado de Tablero inferior
Longitud Hidráulica	: 148.2m
Longitud de diseño	: 150m
Sección transversal	: Puente Viga-Losa
Espesor de losa	: 0.20m
Número de vías	: 2
Número de barreras	: 2
Espesor de asfalto	: 0.05m

2.2. Ubicación del puente

El Puente en Arco Atirantado sobre el río Perené, se encuentra ubicado en:

Región:	Junín
Provincia:	Chanchamayo
Distrito:	Perené
Lugar:	Sector bajo Marankiari, km 21 de la red vial nacional PE5s
Altitud:	618 msnm

Las coordenadas geográficas aproximadas de esta obra son:

X= 475628 E Y=8790175 N

2.3. Geometria del modelo

El elemento principal del puente es un doble arco superior con tirante inferior, de 150 m de luz, con una relación flecha/luz de 1/6, los cuales están situados en sendos planos inclinados hacia el interior y arriostrados entre sí, para dotarlos de mayor estabilidad frente al pandeo fuera del plano. El tablero de ancho variable de 14,60 m en la sección central a 15,25 m en sus extremos es mixto, formado por una losa de concreto sobre placa colaborante que se apoya en vigas transversales unidas a los tirantes inferiores de los arcos.

2.4. Cargas Permanentes

2.4.1. Peso propio (DC)

La carga se deduce de la geometría teórica de la estructura, considerando para la densidad los siguientes valores:

-	Concreto	25,0 kN/m ³
-	Acero estructural	78,5 kN/m ³

2.4.2. Carga muerta (DW)

Son las debidas a los elementos no resistentes y que, en este caso, se corresponden con el pavimento y las barreras.

Placa Colaborante:	$p = 0,20 \ kN/m^2$
Pavimento:	$p_{emin} = 0,05 \cdot 24,0 = 1,44 \ kN/m^2$
Barreras interiores:	$p = 6,5 \ kN/m \ por \ barrera$
Recrecido veredas:	$p = 0,235 \cdot 24 = 5,7 \ kN/m \ por \ acera$

Acero para torres temporales

Para la fabricación de la estructura metálica se emplearán chapas y perfiles de acero del tipo ASTM A501GrB.

Límite elástico y tensión de rotura

-	Límite elástico	$fy = 345 \text{ N/mm}^2$
-	Tensión de rotura	$fu = 485 \text{ N/mm}^2$

Acero para tirantes

Para la fabricación de las tirantes se emplean tirantes de acero del tipo ASTM A416-270.

Pernos conectores.

-	Límite elástico mínimo	350 N/mm²
-	Tensión mínima de rotura	450 N/mm ²

Placa colaborante

El acero utilizado para la placa colaborante es acero suministrado en bobinas, siendo sus características las siguientes:

Límite elástico $fy = 320 \text{ N/mm}^2$

2.5. Cargas Variables

2.5.1. Sobrecarga Vehicular (LL)

Se ha adoptado para el cálculo del tablero la carga definida en el manual de diseño de puentes. Esta carga está compuesta por dos tipos de carga.

- a) Un camión tipo de tres ejes y peso total de 325 kN, repartido según se indica en la siguiente figura.
- b) Un tándem de diseño formado por un conjunto de 2 ejes con una carga de 110 kN cada uno de ellos y separados 1,20 m en la dirección longitudinal del puente. La separación entre las dos ruedas de cada eje en sentido transversal al puente se considera igual a 1.8 m.
- c) Una sobrecarga uniforme de 9,3 kN/m distribuida en un ancho de 3,0 m en dirección transversal.

2.5.2. Frenado (BRK)

El esfuerzo de frenado se estima será: 166 kN, la cual se asumirá que actúa horizontal. Se tiene la siguiente fuerza de frenado:

$$q = \frac{\frac{166\text{kN}}{15.25\text{m}}}{150\text{m}} = \frac{0.0725\text{kN}}{\text{m2}} \text{ cada superficie de carril}$$

2.5.3. Viento (WS)

Se considera una velocidad del viento igual a:

$$V_{z,tablero} = 2.5V_0 \left(\frac{V_{10}}{V_B}\right) Ln\left(\frac{z}{z_0}\right) = 163 \ km/h$$

$$V_{z,\text{clave}} = 2.5V_0 \left(\frac{V_{10}}{V_B}\right) Ln\left(\frac{z}{z_0}\right) = 205 \ km/h$$

donde: V10 = velocidad de referencia a 10 m = 160 km/h

VB = V10 = 160 km/h

z = altura sobre el nivel del agua (10 m tablero, 35 m la clave)

V0, zo = constantes indicadas en la tabla siguiente

V0 = 8.20 mph = 13.2 km/h

$$z0 = 0.23$$
 ft = 70 mm

Tabla 1: Valores de las constantes Vo y Zo

(3.8.1.1-1- AASHTO)

Condición	Terreno abierto Área Suburbana		Área Suburbana	Área urbana
Vo	8.20 mph	Ι	10.90 mph	12.00 mph
Zo	0.23 ft	J	3.28 ft	8.20 ft

La presión del viento resulta igual a:

$$P_{z,tablero} = P_B \left(\frac{V_z}{160}\right)^2 = 1,04 P_B$$

$$P_{z,clave} = P_B \left(\frac{V_z}{160}\right)^2 = 1,64 P_B$$

Los valores de PB se obtienen de la tabla siguiente:

Tabla 2: Presiones básicas, PB, correspondientes a uan velocidad Vs=100 mph

(3.8.1.2.1-1 AASHTO)

Componente Estructural	Presión por Barlovento	Presión por Sotavento
Reticulados, Columnas y Arcos	0.050 ksf	0.025 ksf
Vigas	0.050 ksf	NA
Superficies de pisos largos	0.040 ksf	NA

Que en unidades del sistema internacional resulta igual a:

Tabla 3: Base pressures, PB Corresponding to VB=160 km/hr.

SUPERSTRUCTURE COMPONTENT	WINDWARD LOAD, MPa	LEEWARD LOAD, MPa
Trusses, Columns, and Arches	0.0024	0.0012
Beams	0.0024	NA
Large Flat Surfaces	0.0019	NA

Resultando una carga total sobre la estructura igual a:

pviga long inferior barlovento = $2,00 \times 1,04 \times 2,4 = 5,00 \text{ kN/m}$

 $p_{viga \ long \ inferior \ sotavento} = 2,00 \ x \ 1,04 \ x \ 1,2 = 2,50 \ kN/m$

pviga long superior barlovento en apoyo = 1,60 x 1,04 x 2,4 = 4,00 kN/m

 $p_{viga \ long \ superior \ sotavento \ en \ apoyo} = 1,60 \ x \ 1,04 \ x \ 1,2 = 2,00 \ kN/m$

pviga long superior barlovento en clave = 1,60 x 1,64 x 2,4 = 6,30 kN/m

 $p_{viga \ long \ superior \ sotavento \ en \ clave} = 1,60 \ x \ 1,64 \ x \ 1,2 = 3,15 \ kN/m$

Figura 2-1 Asignación de cargas de viento

Se considera una presión de viento igual a 1.5 kN/m aplicada a una altura de 1.8 m sobre la rasante.

2.5.5. Variación de temperatura uniforme (TU)

Incremento uniforme de temperatura: En ausencia de datos más precisos, los rangos de temperatura serán los indicados en la tabla siguiente.

Tabla 4: Rangos de Temperatura (°C)

Material	Costa	Sierra	Selva
Concreto armado o preesforzado Acero Madera	10° a 40°C 5° a 50°C 10° a 40°C	-10° a +35°C -20° a +50°C -10° a +35°C	10° a 50°C 10° a 60°C 10° a 50°C

Para la estructura metálica se considera un rango de temperaturas igual a:

$$-20^{\circ}C < T < 50^{\circ}C$$

Para la losa de concreto se considera un rango de temperaturas igual a:

$$-10^{\circ}\text{C} < \text{T} < 35^{\circ}\text{C}$$

Siendo por tanto la variación total anual de temperatura igual a:

$$\Delta Tac = 70^{\circ}C \text{ y} \Delta Tcn = 45^{\circ}C$$

Puesto que se desconoce la temperatura de puesta en servicio de la estructura, se considera un incremento de temperatura igual al 70% del rango total de variación anual:

$$\Delta Tu = 49^{\circ}C$$

 $\Delta Tu = 31.5^{\circ}C$

Asumiendo la temperatura de 0°, se tiene [-20°;29°] para acero y [-10°;21.5°] en concreto

2.5.6. Variación de gradiente de temperatura (TPG)

Además del incremento uniforme de temperatura se tendrá en cuenta un gradiente térmico vertical de acuerdo a la siguiente tabla.

	Sin A	sfalto	5 cm A	Asfalto	10 cm .	Asfalto
Región	Τ1	T ₂	Τ1	<i>T</i> ₂	Τ1	<i>T</i> ₂
Costa	40	15	35	15	30	15
Sierra	40	5	35	5	30	5
Selva	50	20	45	20	40	20

Tabla 5: Temperaturas que definen los Gradientes (°C)

Los valores para el gradiente térmico positivo se tomarán directamente de la tabla anterior y los valores para el gradiente térmico negativo se obtendrán multiplicando los valores de la tabla por -0,5. Resultando, por tanto, los siguientes gradientes de diseño:

Gradiente positivo	\rightarrow	$T1 = 35^{\circ}C$;	$T2 = 5^{\circ}C$
Gradiente negativo	\rightarrow	$T1 = -17.5^{\circ}C$;	$T2 = -2.5^{\circ}C$

Para la aplicación del gradiente térmico en el tablero se considera la siguiente figura, siendo T3 = 0 de acuerdo con AASHTO art.3.12.3:

A = 300 mm para tableros de concreto de más de 400 mm de espesor

A = Canto total - 100 mm para tableros de concreto de menos de 400 mm de espesor

A = 300 mm y t igual al espesor de la losa de concreto en secciones mixtas

Figura 2-2 Positive Vertical Temperature Gradient in Concrete and Steel Superestructures

2.5.7. Sobrecarga zonas peatonales (PL)

deberán diseñarse para una sobrecarga de 3,5 kN/m2 (360 kgf/m2) actuante en los tramos que resulten desfavorables en cada caso y simultáneamente con las cargas vivas debidas al peso de los vehículos.

Se exceptúan las veredas de los puentes no urbanos cuyas veredas tengan anchos menores que 0,60 m, para los cuales no será necesario considerar esta sobrecarga.

Se ha considerado terreno tipo "D" para la obtención del espectro de diseño:

SS =	0.78		
S1 =	0.28	PGA =	0.32
Fpga =	1.20	Sds =	0.936
As =	0.384	Sd1 =	0.504
Fa =	1.20	T0 =	0.108
Fv =	1.80	Ts =	0.538

Figura 2-3 Espectro sísmico de cálculo

2.7. Combinaciones de Carga

La condición de diseño básica que debe cumplir cada uno de los componentes de la estructura es que su capacidad resistente no debe ser excedida por la solicitación actuante, de acuerdo con el estado límite de análisis, se estudia el estado límite de Servicio, Resistencia y Evento Extremo I. En los estados de Servicio I y Resistencia I, no se está considerando la carga viva por ser insignificante en este proceso de montaje y lanzamiento.

Servicio I: DC + 0.3WS

Resistencia I: 1.25DC

Resistencia III: 1.25DC + 1.4WS

Evento Extremo X: $1.0DC \pm RSX$

Evento Extremo Y: $1.0DC \pm RSY$

2.8. Secciones de los elementos estructurales

2.8.1 Secciones de los elementos estructurales tipo cajón

para la Viga Tirante en la zona central corresponde a la sección A-A, la zona intermedia con sección B-B y en los extremos con sección C-C, para el Arco en la zona central e intermedia corresponde a la sección D-D y E-E y en extremo con sección F-F.

Secciones Longitudinales	A-A	B-B	C-C	F-F	E-E D-D
Dimensiones y Cálculo de propiedades geométricas					
Ancho de alas: b (mm)	1,300	1,300	1,300	1,300	1,300
Espesor de alas: t (mm)	32	25	32	32	25
Peralte del alma: D (mm)	1,936	1,950	1,936	1,536	1,550
Espesor del alma: tw (mm)	20	20	32	32	25
Distancia entre ejes de alas	1,968	1,975	1,968	1,568	1,575
Área de sección transversal: Ag(m2)	0.305221	0.285457	0.352138	0.317559	0.279545
Producto de inercia en ejes YZ: Iyz(m4)	-0.01904714	-0.01486778	-0.01899882	-0.01086898	-0.00845796
Momento de inercia en eje Y: Iy(m4)	0.159327	0.140813	0.17403	0.0994	0.0853465
Momento de inercia en eje Z: Iz(m4)	0.0782986	0.0735181	0.0972273	0.068868	0.0576439
Distancia en Y de fibra extrema: yb(m)	0.8865	0.8846	0.8859	0.8201	0.8179
Distancia en Z de fibra extrema: zb (m)	0.9833	0.9812	0.9849	0.8	0.8001
Módulo de sección en eje Y: Sy(cm3)	162032.95	142063.156	176698.142	124250	106669.791
Módulo de sección en eje Z: Sz(cm3)	88323.294	83108.863	109749.746	83975.125	70477.931
Ángulo de rotación de ejes principales:	12.59°	11.92°	13.162°	17.725°	15.705°
Momento de inercia en eje Y': (m4)	0.164	0.144	0.178	0.103	0.088
Momento de inercia en eje Z': (m4)	0.074	0.070	0.093	0.065	0.055
Distancia en Y' de fibra extrema: (m)	0.826	0.78	0.834	0.673	0.648
Distancia en Z' de fibra extrema: (m)	1.194	1.20	1.204	1.021	1.002
Modulo de sección en eje Y': (cm3)	89642.343	90230.332	111252.431	97167.989	85286.625
Modulo de sección en eje Z': (cm3)	137002.533	119959.534	148233.2	100758.025	87637.03

Tabla 6: Secciones de vigas longitudinales tipo cajon inferior y superior

Secciones Transversales y Montante	Montante	Viga de Apoyo	Viga Arriostre Superior 1	Viga Arriostre Superior 2
Dimensiones geométricas				
Ancho de alas: b (mm)	1,200	450	1,000	1,200
Espesor de alas: t (mm)	20	20	20	20
Peralte del alma: D (mm)	1,260	960	960	960
Espesor del alma: tw (mm)	20	20	20	20
Distancia entre ejes de alas	1,280	980	980	980

Tabla 7: Secciones de vigas transversales tipo cajon inferior y superior

2.8.2 Secciones de los elementos estructurales tipo de alma llena

Secciones Transversal	Montante
Dimensiones geométricas	
Ancho de ala superior: b1 (mm)	300
Espesor de ala superior: t1 (mm)	12.5
Peralte del alma: D (mm)	967.5
Espesor del alma: tw (mm)	10
Ancho de ala superior: b1 (mm)	400
Espesor de ala superior: t1 (mm)	20

Tabla 8: Sección de vigas transversal inferior de alma llena

Figura 2-4 Espectro sísmico de cálculo

El peso especificado por el proyectista es de 1450 tonf. Sin embargo, en el modelamiento se llegó a obtener 1500 tonf , siendo conservador.

Figura 2-5 Vista en elevación identificando las secciones longitudinales

3. ANÁLISIS DEL MODELO

3.1. Estado límite de deformaciones de la estructura

Los modos de vibración del puente son los siguientes:

Figura 2-7 Modo 2 , T=0.77078 y frecuencia f=1.29738

Figura 2-8 Modo 2, T=0.61652 y frecuencia f=1.62201

3.2. Reacciones en los Apoyos

Las cargas máximas a compresión en los aparatos de apoyo son las siguientes:

Figura 2-10 Cargas máximas debido a la losa

Figura 2-11 Cargas máximas debido a las barandas, barreras y asfalto

Figura 2-13 Cargas máximas debido al Sismo longitudinal EQx

Joint Reactions (SISMO Y)

Figura 2-14 Cargas máximas debido al Sismo transversal EQy

ESTADO DE CARGA	R (kN)
DC1	4098
DC2	2605
DW	1233
LL+IM	1161
EQx	196
EQy	406

Tabla 9: estados de carga del puente

Estados Límites empleadas para las verificaciones de los apoyos y sus valores son: Resistencia I =1.25DC+1.50DW+1.75(LL+IM) =12260kN Evento Extremo I-Sismo X=1.0DC+1.0DW+0.5(LL+IM) +(EQx+0.3EQy) = 8834kN Evento Extremo I-Sismo Y=1.0DC+1.0DW+0.5(LL+IM) +(EQy+0.3EQx) = 8981kN

 $\star \times$

4. ETAPAS CONSTRUCTIVAS PARA EL MONTAJE Y LANZAMIENTO

4.1. Esquemas de lanzamiento

Figura 4-1 Vista en planta para el montaje y lanzamiento

Figura 4-2 Vista elevación de montaje y lanzamiento de propuesta 01 considerando torres con pedestal

PROPUESTA 02

Figura 4-3 Vista elevación de montaje y lanzamiento de propuesta 01 considerando torres sin pedestal

5. LANZAMIENTO INCREMENTAL COMPARACION DE RESULTADOS ENTRE PROPUESTAS 01 Y 02

Notaremos que la propuesta 1 posee pedestales de altura de 5 m y zapatas de peralte de 2 m, mientras que la propuesta 2 solo zapatas de peralte de 2 m sin el uso de pedestales, las torres ubicadas en el cauce del río son hechas de acero estructural de sección tubular circular. Ahora, se procederá con la realización de la comparación de los resultados debido al lanzamiento incremental. Para realizar esto, debemos observar que las solicitaciones que afectan a nuestro puente generen desplazamientos en el punto de control que formen una gráfica similar a la siguiente:

Figura 5-1 punto de control en la viga tirante delantera (arranque)

Las gráficas para la propuesta 2 son similares a los de la propuesta 1, por lo que el análisis y conclusiones serán similares. A continuación, se superpondrán las gráficas generadas por las propuestas, las cuales son las siguientes:

DESPLAZAMIENTOS VERTICALES

Figura 5-2 Superposición de desplazamientos relativos para SRVI+

Figura 5-3 Superposición de desplazamientos relativos para RI

Figura 5-4 Superposición de desplazamientos relativos para RIII+

Figura 5-5 Superposición de desplazamientos relativos para EEX+

Figura 5-6 Superposición de desplazamientos relativos para EEX-

Figura 5-7 Superposición de desplazamientos relativos para EEY+

Figura 5-8 Superposición de desplazamientos relativos para EEY-

Adicionalmente, se superpuso las gráficas de todos los desplazamientos progresivos para todas las solicitaciones, obteniendo el siguiente resultado:

Figura 5-9 Comparativa de desplazamientos de propuesta 1

Figura 5-10 Comparativa de desplazamientos de propuesta 2

De la comparativa se puede mencionar que las solicitaciones RIII+ y EEY- son las que generarán un grado más alto de desplazamientos en el tramo de 60 m, mientras que las solicitaciones EEX+ y EEY+ son las que generan los menores desplazamientos para la dirección negativa del eje Z global en este tramo crítico. Se puede inferir que esto último es provocado porque en estas direcciones de evento extremo las cargas de gravedad son efectivas estabilizando la estructura. Por último, respecto a esta última gráfica, podemos comentar que todas, a excepción de EEY+, las solicitaciones siguen una tendencia al desplazamiento progresivo ascendente a medida que se realiza el lanzamiento del puente. Por otro lado, también se realizó la comparativo de los picos para cada una de las solicitaciones, las cuales son las siguientes:

Figura 5-11 Comparación de desplazamientos picos en mm para la solicitación SRVI+

Figura 5-12 Comparación de desplazamientos picos en mm para la solicitación RI

Figura 5-13 Comparación de desplazamientos picos en mm para la solicitación RIII+

Figura 5-14 Comparación de desplazamientos picos en mm para la solicitación EEX+

Figura 5-15 Comparación de desplazamientos picos en mm para la solicitación EEX-

Figura 5-16 Comparación de desplazamientos picos en mm para la solicitación EEY+

Figura 5-17 Comparación de desplazamientos picos en mm para la solicitación EEY-

ESFUERZOS

A continuación, se superpondrán las gráficas generadas por las propuestas 1 y 2, las cuales son las siguientes:

Figura 5-18 esfuerzos relativos para SRVI+

Figura 5-19 esfuerzos relativos para RI

Figura 5-20 esfuerzos relativos para RIII+

Figura 5-21 esfuerzos relativos para EEX+

Figura 5-22 esfuerzos relativos para EEX-

Figura 5-23 esfuerzos relativos para EEY+

Figura 5-24 esfuerzos relativos para EEY-

Figura 5-25 esfuerzos de propuesta 1

Figura 5-26 esfuerzos de propuesta 2

FUERZA CORTANTE VERTICAL

A continuación, se superpondrán las gráficas generadas por las propuestas 1 y 2, las cuales son las siguientes:

Figura 5-27 fuerza cortante de propuesta 1

Figura 5-28 fuerza cortante de propuesta 2

MOMENTO FLECTOR VERTICAL

A continuación, se superpondrán las gráficas generadas por las propuestas 1 y 2, las cuales son las siguientes:

Figura 5-29 momento flector de propuesta 1

Figura 5-30 momento flector de propuesta 2

6. PROPUESTA DE APOYOS DESLIZANTES ARTICULADOS

6.1. Contactos y mallado

Una vez hecho el modelado lo siguiente es definir las condiciones de frontera, esto implica definir los contactos, apoyos, etc. Por defecto el programa indica que los apoyos entre los diversos componentes de la geometría son soldados y que no presentar fricción entre ellos.

Figura 6-1 Contactos reconocidos por el programa y el tipo de contacto.

Para el mallado que se genera por defecto solo se debe configurar la longitud de los elementos, más adelante se verá cómo podemos modificar la malla completa para obtener otro tipo de resultados, a menor valor de la longitud del elemento mayor será la cantidad de elementos, sin embargo exigirá mayores capacidades para el procesamiento y además que con el tipo de licencia la cantidad de nodos no podrá superar el valor de 128000. Para nuestro primer análisis asignaremos con 0.06 m de longitud del elemento.

D	etails of "Mesh"	→ ‡ □ ×			
Display					
	Display Style	Use Geometry Setting			
-	Defaults				
	Physics Preference	Mechanical			
	Element Order	Program Controlled			
	Element Size	6.e-002 m			
t	Sizing				
+	Quality				
t	Inflation				
t	Advanced				
Statistics					
	Nodes	125403			
	Elements	58048			
	Show Detailed Statistics	No			

Figura 6-2 Asignación de la longitud del elemento.

Figura 6-3 Mallado generado en el apoyo estructural

6.2. Asignación de cargas y apoyos

Para las cargas que se aplicarán se debe ingresar un valor arbitrario ya que se busca con que valor máximo los materiales llegan a su límite de fluencia. Del mismo modo que las cargas se deberán agregar los apoyos de la estructura, para el caso de los apoyos se asignará que la base de la estructura estará empotrada, es decir, la base no podrá tener un movimiento de rotación o desplazamiento, pero si podrá generar fuerzas y momentos de reacción.

Figura 6-4 Asignación de soportes fijos en la base de la estructura

Para la carga se escogerá una carga de presión, es decir, una fuerza distribuida uniformemente en la superficie de contacto.

Figura 6-5 Distribución de la carga de presión en la superficie de contacto

6.3. Solución de esfuerzos

Finalmente se debe escoger las soluciones que necesitamos para analizarlas, en nuestro caso seleccionamos el valor del esfuerzo equivalente y máximo esfuerzo principal.

Figura 6-6 Selección de las soluciones a analizar

6.4. Resultados del apoyo articulado

En un comienzo se asigna a todo el conjunto, a excepción del pin y de las planchas que soportan la carga, el material acero A709 y se resolverá con la malla automática que genera el programa, del mismo modo con una malla tetraédrica, en cada malla se hará una discretización de la cantidad de elementos y nodos.

Figura 6-7 Materiales asignados a la estructura

Los resultados del análisis para una carga de presión con valor de 6,88 MPa que se distribuye proporcionalmente al área de la superficie de contacto. La superficie que se muestra a

continuación tiene un área de 1.420914 m² (suma de las áreas A1 y A2) soportando una presión de 4.096 MPa uniformemente distribuida con una fuerza de 5820 KN.

Figura 6-8 Superficie con área de 1.420914 m^2

Mientras que el área de la superficie que posee un contacto vertical es de 0.96574 m^2 (suma de las áreas B1 y B2) soportando una presión de 2.784 MPa uniformemente distribuida con una fuerza de 2688.62 KN.

Figura 6-9 Superficie con área de 0.96574 m^2

Ahora se usará solamente el material A709, se usarán ambas mallas de modo que con los resultados podamos hacer gráficos comparativos. Para el primer caso usaremos una malla automática con una longitud de 0.06 m del elemento con una presión de 6.88 MPa aplicadas en las áreas A1, A2, B1, B2 anteriormente descritas.

Figura 6-10 Asignación del material A709 grado 50

Figura 6-11 esfuerzo equivalente para el material A709 grado 50

Como se puede apreciar, el valor del esfuerzo con 344.92 MPa, ahora se verá la convergencia con los valores de longitud de malla automática descritos anteriormente.

Longitud de elemento (m)	Número de elementos	Número de nodos	Esfuerzo (MPa)	Solo A709
0.08	57673	22077	284.25	17.46
0.075	65775	26175	333.72	3.09
0.07	81982	34438	157.04	54.40
0.065	102125	45483	160.94	53.27
0.063	112599	51242	376.64	9.37
0.061	121584	56302	355.86	3.34
0.0608	122280	56711	290.97	15.51
0.0606	122413	56838	288.64	16.18
0.0604	124107	57549	333.19	3.25
0.0602	123254	57453	282.3	18.02
0.06	125403	58048	344.37	0

Tabla 10: Comparativa con malla automática

Figura 6-12 esfuerzo equivalente para una longitud de elemento de 0.08 m

Figura 6-13 esfuerzo equivalente para una longitud de elemento de 0.075 m

Figura 6-14 esfuerzo equivalente para una longitud de elemento de 0.070 m

Figura 6-15 esfuerzo equivalente para una longitud de elemento de 0.065 m

Figura 6-16 esfuerzo equivalente para una longitud de elemento de 0.063 m

Figura 6-17 esfuerzo equivalente para una longitud de elemento de 0.0610 m

Figura 6-18 esfuerzo equivalente para una longitud de elemento de 0.0608 m

Figura 6-19 esfuerzo equivalente para una longitud de elemento de 0.0606 m

Figura 6-20 esfuerzo equivalente para una longitud de elemento de 0.0604 m

Figura 6-21 esfuerzo equivalente para una longitud de elemento de 0.0602 m

Longitud de elemento (m)	Longitud de Número de elemento (m) elementos		Esfuerzo (MPa)	Solo A709
0.15	21875	9315	196.21	18.49
0.1	44781	20995	176.03	6.30
0.09	54861	26358	218.82	32.15
0.08	69338	34165	171.57	3.61
0.07	99543	51787	168.48	1.75
0.069	104324	54751	171.26	3.42
0.068	109629	57609	194.13	17.24
0.067	114297	60561	191.25	15.50
0.066	119933	64166	198.58	19.92
0.065	124993	67221	163.15	1.47
0.0647	127994	69143	165.59	0

Tabla 11: Comparativa con malla tetraédrica

Figura 6-22 esfuerzo equivalente para una longitud de elemento de 0.15 m

Figura 6-23 esfuerzo equivalente para una longitud de elemento de 0.10 m

Figura 6-24 esfuerzo equivalente para una longitud de elemento de 0.09 m

Figura 6-25 esfuerzo equivalente para una longitud de elemento de 0.08 m

Figura 6-26 esfuerzo equivalente para una longitud de elemento de 0.07 m

Figura 6-27 esfuerzo equivalente para una longitud de elemento de 0.069 m

Figura 6-28 esfuerzo equivalente para una longitud de elemento de 0.068 m

Figura 6-29 esfuerzo equivalente para una longitud de elemento de 0.067 m

Figura 6-30 esfuerzo equivalente para una longitud de elemento de 0.066 m

Figura 6-31 esfuerzo equivalente para una longitud de elemento de 0.065 m

Figura 6-32 esfuerzo equivalente para una longitud de elemento de 0.0647 m

6.5. Discretización con malla automática

La malla automática que genera Ansys es una mezcla entre la malla de barrido y la malla tetraédrica, la malla de barrido se usa para geometrías que tienen una forma regular o que pueden ser descompuestas en formas regulares, con este método se pueden generar mallas de alta calidad con un número relativamente pequeño de elementos. El método de la malla automática es rápido y sencillo de utilizar, puede no generar una malla óptima en todos los casos (Lazo-Molina, 2022).

Figura 6-33 Malla generada para una longitud de elemento de 0.5 m

Figura 6-34 Malla generada para una longitud de elemento de 0.1 m

Figura 6-35 Malla generada para una longitud de elemento de 0.06 m

Longitud de elemento (m)	Número de elementos	Número de nodos
0.08	57673	22077
0.075	65775	26175
0.07	81982	34438
0.065	102125	45483
0.063	112599	51242
0.061	121584	56302
0.0608	122280	56711
0.0606	122413	56838
0.0604	124107	57549
0.0602	123254	57453
0.06	125403	58048

Tabla 12: Discretización con malla automática

6.6. Discretización con malla tetraédrica

Este tipo de malla usa tetraedros, este tipo de malla es muy flexible y puede adaptarse a geometrías complejas, pero puede requerir un mayor número de elementos para obtener la misma precisión que otros tipos de mallas (Ansys, YouTube, 2022)

Figura 6-36 Malla generada para una longitud de elemento de 0.5 m

Figura 6-37 Malla generada para una longitud de elemento de 0.1 m

Figura 6-38 Malla generada para una longitud de elemento de 0.0647 m

Longitud de elemento (m)	Número de elementos	Número de nodos
0.15	21875	9315
0.1	44781	20995
0.09	54861	26358
0.08	69338	34165
0.07	99543	51787
0.069	104324	54751
0.068	109629	57609
0.067	114297	60561
0.066	119933	64166
0.065	124993	67221
0.0647	127994	69143

Tabla 13: Discretización con malla tetraédrica

6.7. Gráfica comparativa de malla automática y tetraédrica

Figura 6-39 Grafico de malla automática

Figura 6-40 Grafico de malla tetraédrica

7. PROPUESTA DE TORRES TEMPORALES

Para asignar el perfil se debe definir las dimensiones de la viga según las indicaciones de los planos, para las vigas que se usan se tienen 3 tipos de vigas:

- Viga HSS circular 10"X0.375"
- Viga HSS circular 8"X0.32"
- Viga W12X72

Ahora en el entorno Mechanical se deberán asignar los materiales, los contactos, condiciones de contorno, cargas y resultados a obtener. Los materiales se asignan según las indicaciones para la asignación:

- Vigas: ASTM A500 Grado B.
- Apoyo articulado: ASTM 709 Grado 50.
- Pin del apoyo articulado: SAE 1080.
- Plataforma para el apoyo articulado: Madera.
- Concreto para lo restante.

Figura 7-1 Asignación de materiales en torre temporal

Tabla 14: Tamaño de elementos

	Tipo	Tamaño de elemento (valores referenciales)
Vigas	Edge	5.0 m (esto para que se considere un solo elemento)
Apoyo articulado	Body	0.25 m
Concreto	Body	0.8 m
Madera	Body	0.25 m

Figura 7-2 Creación del mallado para el análisis

para todos los casos será una carga aplicada en las placas del apoyo articulado con un valor

de 650 tonf que equivalen a 6374.3225 KN.

Figura 7-3 Asignación de la carga

7.1. Torre de Apeo 1 Caso 1

Figura 7-4 Deformación total

Figura 7-5 Esfuerzo equivalente

7.2. Torre de Apeo 2 Caso 1

Figura 7-6 Deformación total

Figura 7-7 Esfuerzo equivalente

7.3. Torre de Apeo 3 Caso 1

Figura 7-8 Deformación total

Figura 7-9 Esfuerzo equivalente

7.4. Torre de Lanzamiento 1 Caso 1

Figura 7-10 Deformación total

Figura 7-11 Esfuerzo equivalente

7.5. Torre de Lanzamiento 2 Caso 1

Figura 7-12 Deformación total

Figura 7-13 Esfuerzo equivalente

Figura 7-14 Deformación total

Figura 7-15 Esfuerzo equivalente
7.7. Torre de Apeo 2 Caso 2

Figura 7-16 Deformación total

7.8. Torre de Apeo 3 Caso 2

Figura 7-18 Deformación total

Figura 7-19 Esfuerzo equivalente

7.9. Torre de Lanzamiento 1 Caso 2

Figura 7-20 Deformación total

Figura 7-21 Esfuerzo equivalente

7.10. Torre de Lanzamiento 2 Caso 2

Figura 7-22 Deformación total

Figura 7-23 Esfuerzo equivalente

7.11. Tabla resumen

Solución	Resultado	Torre de apeo 1	Torre de apeo 2	Torre de apeo 3	Torre de lanzamiento 1	Torre de lanzamiento 2
Deformación total (mm)	Deformación máxima de la torre en la dirección "Y"	2.4307	2.4887	2.2258	1.8525	1.9555
Esfuerzo equivalente (MPa)	En la plancha de acero A709	126.59	122.11	134.07	129.65	129.77
Fuerza axial (N)	Fuerza máxima de compresión y tensión	1.02E+05	1.15E+05	1.17E+05	9.65E+04	1.02E+05
Momento flector total (N.mm)	Momento máximo	5.05E+07	5.79E+07	5.81E+07	4.71E+07	4.51E+07
Esfuerzo cortante (MPa)	Cortante máximo	35.981	56.214	66.788	48.155	48.121
Máximo esfuerzo combinado (MPa)	Máximo esfuerzo de tensión en los tubos	87.156	98.697	38.271	39.075	38.975

Tabla 15: Resumen de Caso 1

Tabla 16: Resumen de Caso 2

Solución	Resultado	Torre de apeo 1	Torre de apeo 2	Torre de apeo 3	Torre de lanzamiento 1	Torre de lanzamiento 2
Deformación total (mm)	Deformación máxima de la torre en la dirección "Y"	2.4354	2.5232	2.6367	2.4761	2.5664
Esfuerzo equivalente (Mpa)	En la plancha de acero A709	115.4	126.7	129.68	130.17	130.21
Fuerza axial (N)	Fuerza máxima de compresión y tensión	8.67E+04	9.98E+04	1.10E+05	1.05E+05	1.12E+05
Momento flector total (N.mm)	Momento máximo	5.64E+07	4.88E+07	5.04E+07	4.47E+07	4.45E+07
Esfuerzo cortante (MPa)	Cortante máximo	51.516	36.686	46.074	46.73	43.835
Máximo esfuerzo combinado (MPa)	Máximo esfuerzo de tensión en los tubos	47.788	39.366	39.648	35.828	38.675

7.12 Tablas comparativas

Deformación total (mm)

Esfuerzo equivalente (Mpa)

Figura 7-25 Comparación del esfuerzo equivalente

Fuerza axial (N)

Figura 7-26 Comparación de la fuerza axial

Momento flector total (KN.mm)

Esfuerzo cortante (MPa)

Figura 7-28 Comparación del esfuerzo cortante

Máximo esfuerzo combinado (MPa)

Figura 7-29 Comparación del máximo esfuerzo combinado

8. CONCLUSIONES Y RECOMENDACIONES

BIBLIOGRAFIA

- Roberto M. (2012). Esfuerzo y deformación.

_

- Alonso Martínez, Mar. (2013). Nuevo sistema de empuje continuo de puentes: diseño y análisis mediante simulación numérica [Tesis doctoral, Universidad de Oviedo].
- Beer, F. P., Johnston, E. R., DeWolf, J. T., & Mazurek, D. F. (2010). Mecánica de materiales (Vol. 238, pp. 319-370). Mc Graw Hill.
- Eduardo F. (2004). Aportaciones al estudio de las máquinas eléctricas de flujo axial mediante la aplicación del método de los elementos finitos.
- Nápoles, E. (2015). Una introducción al análisis por elementos finitos: aplicaciones y ejemplos. 108.
- Durand, J. (2015). Esfuerzo y deformación lineal. Universidad Nacional de Ingeniería, 6.

ANEXOS

ANEXO A : DISEÑO DE ESTRUCTURAS TEMPORALES

DISEÑO DE CABLES

Siendo la fuerza de tiro se considera el 10% del peso de la superestructura, se tiene: FR = 10% (1600 tonf) = 160 tonf

Para dos cámaras de tiro, la fuerza con la que debe ser tirada cada grupo de cables es de 80 tonf.

Superestructura con volado de 48m:

Superestructura con volado de 51m:

Figura 0-2 Fuerzas axiales en cables de tiro y retenida en volado de 51m Resistencia (tonf)

La fuerza del cable de retenida "80.4 tonf" es la máxima que se presenta, si se usan 10 cables ASTM-A416 ø5/8", se tienen la siguiente fuerza de tensión en cada cable:

Dián	netro	Peso Ap	roximado	Resistencia a la Ruptura					
Diar	neter	Approxim	ate Weight		M	inimum Bre	aking Fo	rce	
Pulgadas Inch	Milímetros mm	lb / ft	kg/m	Arado Mej Ib	orado / IPS Ton*	Arado Extra M Ib	lejorado / EIP Ton*	Arado Extra Extra Ib	Mejorado / EEIF Ton*
1/4	6.35	0.12	0.18	5,890	2.7	6,790	3.1	-	-
5/16	7.94	0.18	0.27	9,150	4.1	10,540	4.8	-	-
3/8	9.53	0.26	0.39	13,120	6.0	15,100	6.9	16,590	7.5
7/16	11.1	0.35	0.50	17,780	8.1	20,380	9.2	22,380	10.2
1/2	13	0.46	0.68	23,000	10.4	26,600	12.1	29,200	13.2
9/16	14.5	0.59	0.88	29.000	13.2	33,600	15.2	37,000	16.8
5/8	16	0.72	1.07	35,800	16.2	41,200	18.7	45,400	20.6
3/4	19	1.04	1.55	51,200	23.2	58,800	26.7	64,800	29.4
7/8	22	1.42	2.11	69,200	31.4	79,600	36.1	87,600	39.7
1	26	1.85	2.75	89,800	40.7	103,400	46.9	113,800	51.6
1-1/8	29	2.34	3.48	113,000	51.3	130,000	59.0	143,000	64.9
1-1/4	32	2.89	4.30	138,800	63.0	159,800	72.5	175,800	79.8
1-3/8	35	3.50	5.21	167,000	75.7	192,000	87.1	-	-
1-1/2	38	4.16	6.19	197,800	89.7	228,000	103.0	-	-
1-5/8	42	4.88	7.26	230,000	104.0	264,000	120.0	-	
1-3/4	45	5.67	8.44	266,000	121.0	306,000	139.0	-	-
1-7/8	48	6.50	9.67	304,000	138.0	348,000	158.0	-	-
2	52	7.39	11.0	344,000	156.0	396,000	180.0	-	-

$$T = 80.4 tonf/10 = 8.04 tonf$$

Figura 0-3 Resistencia máxima de cable de 5/8" R=16.2 tonf

Factor de seguridad:

$$FS = \frac{16.2}{8.04} = 2.0$$

Descripción	Fuerza Axial (tonf)	Cantidad de Torones (strands) de 5/8"	Área de torones (strands) (cm ²)	Esfuerzo (kg/cm ²)	Esfuerzo último (kg/cm ²)	FS
Cable atiesador	80.4	1(10)	15	5360	18900	3.52

Tabla 17: Distribución de torones (stands) considerando condiciones de servicio

Propuesta de Nariz delantera

La máxima solicitación se da en el lanzamiento con volado de 48m. Se tiene la siguiente verificación de resistencia:

Figura 0-4 Resumen de Ratios en Resistencia de torres de izaje

A continuación, se muestran los resultados de la verificación de los elementos más exigidos (ratio más alto) por cada tipo de sección de perfil metálico.

DISEÑO DE CÁMARA DE TIRO

Se muestra a continuación el diseño de la cama de anclaje para realizar el lanzamiento de la superestructura.

Figura 0-1 Geometría de cámara de anclaje (mm)

Figura 0-2 Cargas máximas en el tiro de Puente

1) Geometria			
Ancho de la zapata a proyectar	bz=	7	m
Largo de la zapata a proyectar	lz=	7	m
Altura de la zapata a proyectar	hz=	2	m
Area de la zapata	Az=bz*lz	49	m2
Modulo de la seccion elastica de la zapata	Sb=lz*(bz^2)/6=	57.167	m3
2)Materiales			
Peso especificio del relleno	ys=	1800	kgf/m3
Peso especificio del concreto	yc=	2300	kgf/m3
Angulo de friccion interna del suelo de fundacio	Φs	30	a
Coeficiente activo del suelo	$k = \tan(45^{a} -$	$(\varphi_s)^2$	
	$\kappa_a = \min(10)$	2 '	
	ka=	0.3333	
Coeficiente pasivo del suelo	$k_n = \tan(45^{\frac{a}{2}} + \frac{q}{2})$	$(\frac{2s}{s})^2$	
	P	2 ^	
	kp=	3.00	
Coeficiente de friccion del suelo de fundacion	$u = \tan(\varphi_s)$		
	u=	0.577	

3) Cargas Actuantes			
Del analisis, se obtiene las cargas actuantes de	los cable de retenida sobre el	bloquee de a	nclaje.
Carga vertical	Fz=	0.5	tonf
Carga lateral	Fx=	80	tonf
Fuerra de empuie pacive	$\sum_{E_{z}} k_p * (0 * h_z)^2$	* γ _s	
	$r_{pa} =2$		
	Fna=	0	tonf
Momento en la base de la cimentacion			
	$M_1 = F_x (h_z)$	+ 180 <i>cm</i>)	
	M1=	304	tonf-m
		1-	
	$M_2 = F_{pa}$	$\left(\frac{n_z}{2}\right)$	
	- r	3	
	M2=	0	tonf-m
			-
Peso de la zapata	Pz=bz*lz*hz*yc=	225.4	tonf
	5\/_ F=+ D=	224.0	4 f
Suma de cargas verticales	2V=-F2+P2=	224.9	toni
	M3=5V*lz/2=	787 15	tonf-m
	1110 21 12/2	707.15	
4) Verificacion por estabilidad			
Verificacion a la estabilidad			
Momento actuante	Ma=M1=	304	tonf-m
Factor de seguridad al volteo	$M_2 + M_3$		
	FSV =	2.589	
		01	
	II(F3V21.5, UK , NG)=	UK	
5) Verificacion por deslizamiento			
Verifcacion al deslizamiento			
Fuerza actuante	Fa=Fx=	80	tonf
Fuerza resistente	Fr=ΣV*u+Fpa=	129.846	tonf
Factor de seguridad al deslizamiento	FSD=Fr/Fa=	1.623	
	if(FSD≥1.25,"OK","NG")=	ОК	

DISEÑO DE CÁMARA DE RETENIDA

Se muestra a continuación el diseño de la cámara de retenida para realizar el lanzamiento de la superestructura.

Figura 0-1 Geometría de cámara de retenida

Figura 0-2 Cargas máximas en la retenida de Puente

1) Geometria			
Ancho de la zapata a proyectar	bz=	7	m
Largo de la zapata a proyectar	lz=	7	m
Altura de la zapata a proyectar	hz=	2	m
Area de la zapata	Az=bz*lz	49	m2
Modulo de la seccion elastica de la zapata	Sb=Iz*(bz^2)/6=	57.167	m3
2)Materiales			
Peso especificio del relleno	ys=	1800	kgf/m3
Peso especificio del concreto	yc=	2300	kgf/m3
Angulo de friccion interna del suelo de fundacio	Φs	30	a
Coeficiente activo del suelo	$k_a = \tan(45^a -$	$(\frac{\varphi_s}{2})^2$	
	ka=	0.3333	
Coeficiente pasivo del suelo	$k_p = \tan(45^{\underline{a}} + \frac{\varphi}{2})$	$(\frac{s}{2})^2$	
	kp=	3.00	
Coeficiente de friccion del suelo de fundacion	$u = \tan(\varphi_s)$		
	u=	0.577	

3) Cargas Actuantes			
Del analisis, se obtiene las cargas actuantes de	los cable de retenida sobre el	bloquee de a	nclaje.
Carga vertical	Fz=	1.8	tonf
Carga lateral	Fx=	80.3	tonf
	$k_n * (0 * h_z)^2$	* γ _s	
Fuerza de empuje pasivo	$F_{pa} = \frac{p}{2}$	$ * b_z$	
	Ena=	0	tonf
Momento en la base de la cimentacion			tom
	$M_1 = F_x (h_z)$	+ 180 <i>cm</i>)	
	M1=	305.14	tonf-m
		h	
	$M_2 = F_{pa} ($	$\left(\frac{n_z}{3}\right)$	
		5	
	M2=	0	tonf-m
Peso de la zapata	Pz=bz*lz*hz*yc=	225.4	tonf
Suma de cargas verticales	ΣV=-Fz+Pz=	223.6	tonf
	M3=ΣV*lz/2=	782.600	tonf-m
4) Varificacion non estabilidad			
4) Verificación a la estabilidad			
Momento actuante	Ma=M1=	305.14	tonf-m
Factor de seguridad al volteo	$M_2 + M_3$		
	$FSV = \frac{2}{M_1} = \frac{1}{M_1}$	2.565	
		01/	
	II (F3V≥1.5,°UK°,°NG°)=	UK	
5) Verificacion por deslizamiento			
Verifcacion al deslizamiento			
Fuerza actuante	Fa=Fx=	80.3	tonf
France and interate	E. 5.14 . 5	120.000	4 f
Fuerza resistente	Fr=ΣV*u+Fpa=	129.096	tont
Factor de seguridad al deslizamiento	FSD=Fr/Fa=	1 608	
	130-11/1a-	1.000	
	if(FSD≥1.25,"OK","NG")=	ОК	

VERIFICACIÓN OREJA DE TIRO

DATOS DE OREJA DE TIRO

Diametro de pin	Dp=	150	mm
Diametro agujero	Dh=	152	mm
Espesor de oreja	t=	75	mm
Espesor de refuerzo	tr=	30	mm
Material oreja		ASTM A50	
Esfuerzo de fluencia	Fy=	50	ksi
Esfuerzo de rotura	Fu=	65	ksi
Peso total de estructura	P=	2000	tonf
Coeficiente de friccion	u=	10%	
Numero de orejas de tiro	N=	2	
Fuerza actuante	Fact=	100	tonf

1. Tensile Failure - Net Section

2. Shear Tear Out along two Planes

Longitud de seccion de falla Lsp= 180 mm Longitud de seccion refuerzo 139 mm Lr= Area de la seccion de falla As=2Lsp*t+2Lr*tr 353.4 As= cm2 Fuerza resistente Psu=As*Fy 1242.32 Psu= tonf Fuerza actuante Fact= 100 tonf Factor de seguridad FS2=Psu/Fact FS2= 12.4

3. Bearing Failure

Diametro de pin Area de contacto estimada

Fuerza resistente

Fuerza actuante Factor de seguridad

dp= 150 mm Abr = Dp(t+2tr)Abr= 202.5 cm2 Pbru=Abr*Fu 925.42 Pbru= tonf 100 Fact= tonf FS3=Pbru/Fact 9.3 FS3=

4. Resistencia de cordon de soldadura

A continuacion se presenta el calculo de la resistencia de un solo corodn de soldadura Esfuerzo de fractura de material denositado Eexx= 70 ksi

Estuerzo de fractura de material depositado	Fexx=	70 KSI
espesor de soldadura	e=	20 mm
Espesor de garganta	tw=	14.14 mm
Longitud real de un cordon	L=	1000 mm
	L/tw=	70.7
Factor de longitud efectiva	β=	1
Longitud efectiva	Lew=β*L=	1 m
Area efectiva	Ae=Lew*tw=	141.4 cm2

Resistencia a corte de la soldadura

TABLE J2.5 (continued) Available Strength of Welded Joints, ksi (MPa)							
Load Type and Direction Relative to Weld Axis	Pertinent Metal	ϕ and Ω	Nominal Stress (<i>F_{nBM}</i> or <i>F_{nw}</i>), ksi (MPa)	Effective Area $(A_{BM} \text{ or} A_{we}),$ in. ² (mm ²)	Required Filler Metal Strength Level ^{[a][b]}		
FILLET WELDS	INCLUDING	FILLETS IN	HOLES AND	SLOTS AND	SKEWED T-JOINTS		
	Base	(Governed by .	J4	Fillen medel with a		
Shear	Weld	$ \phi = 0.75 \\ \Omega = 2.00 $	0.60 <i>F_{EXX}</i> ^[d]	See J2.2a	strength level equal		
Tension or compression— Parallel to weld axis	Tension or to a weld is	nsion or compression in parts joined parallel a weld is permitted to be neglected in design of welds joining the parts.		matching filler metal is permitted.			
Fnv	w=0.6*Fe>	(x=	42	ksi	Фw=	0.75	
R	n1=Fnw*a	ne= 4	417.5 ·	tonf	Ω=	2	
	R	la= Фv	v*Rn1	(LRFD)	R1b=	Rn1/Ω	(ASD)
	R	1a= 3	13.15	tonf	R1b=	208.77	tonf

Resistencia a corte en elementos afectados

Dimensiones area efectiva:

e=	20	mm
L1=	1000	mm
Agv=L1*e=	200	cm2

2. Strength of Elements in Shear The available shear strength of affected and connecting elements in shear shall be the lower value obtained according to the limit states of shear yielding and shear rupture: (a) For shear yielding of the element (J4-3) $R_n = 0.60 F_y A_{gv}$ $\phi = 1.00 (LRFD)$ $\Omega = 1.50 (ASD)$ where $A_{gv} = \text{gross}$ area subject to shear, in.² (mm²) (b) For shear rupture of the element $R_n = 0.60 F_u A_{nv}$ (J4-4) $\phi = 0.75 (LRFD)$ $\Omega = 2.00 (ASD)$ where A_{nv} = net area subject to shear, in.² (mm²)

Fluencia en el area bruta (AISC J4.2a): Rn2=0.6*Fy*Agv=	421.8	tonf	Φw= Ω=	1 1.5	
R2a= R2a=	Фw*Rn2 421.84	(LRFD) tonf	R2b= R2b=	Rn2/Ω 281.23	(ASD) tonf
Rotura en el area neta (AISC J4.2b):					
Anv=Agv=	200	cm2			
Rn3=0.6*Fu*Anv=	548.4	tonf	Φw= Ω=	0.75 2	
R3a= R3a=	Фw*Rn3 411.30	(LRFD) tonf	R3b= R3b=	Rn3/Ω 274.20	(ASD) tonf
Resistencia factorada					
En resistencia: Rr=min(R1a,R2a,F	₹3a) -> Rr=	= 313.15	tonf	(L	RFD)
En servicio: Rs=min(R1b,R2b,R	3b) -> Rs=	208.77	tonf	(A	SD)
Verificacion de Resistencia					
Numero de cordones iguales		n=	2		
Fuerza de seccion en servicio		Fact=	: 100	0 to	onf
Resistencia de soldadura en servicio		R=n*Rs R=	417.	54 to	onf
Verificacion		Fact≤R	Ok	<	
Factor de Seguridad		FS4=n*Rn1/Fact			
		FS4=	8.4	1	

Se observa que la oreja presenta factores de seguridad muy altos en comparacion con la fuerza actuante

FS>>3 OK